دانلود مقاله ISI انگلیسی شماره 106689
ترجمه فارسی عنوان مقاله

مدل پیش بینی اشتعال آتشسوزی رعد و برق برای استفاده عملیاتی

عنوان انگلیسی
A lightning-caused wildfire ignition forecasting model for operational use
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
106689 2018 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Agricultural and Forest Meteorology, Volumes 253–254, 1 May 2018, Pages 233-246

ترجمه کلمات کلیدی
بوش فیر، آتش سوزی ایجاد شده توسط رعد و برق، رگرسیون لجستیک، پیش بینی اسلحه،
کلمات کلیدی انگلیسی
Bushfire; Lightning-caused ignition; Logistic regression; Ignition forecasting;
پیش نمایش مقاله
پیش نمایش مقاله  مدل پیش بینی اشتعال آتشسوزی رعد و برق برای استفاده عملیاتی

چکیده انگلیسی

Lightning-caused wildfires are responsible for substantial losses of lives and property worldwide. Convective storms can create large numbers of ignitions that can overwhelm suppression efforts. Both long- and short-term risk planning could benefit from daily, spatially-explicit forecasts of lightning ignitions. We fitted a logistic regression generalised additive model to lightning-caused ignitions in the state of Victoria, Australia. We proposed a new method for model selection that complemented existing methods and further reduced the number of variables in the model with minimal change to predictive power. We introduced an approach for deconstructing ignition forecasts into contributions from the individual covariates, which could allow model output to be more readily integrated with existing intuitive understandings of ignition likelihood. Our method of model selection reduced the number of variables in the model by 37.5% with little change to the predictive power. The final model showed good predictive ability (AUC 0.859) and we demonstrated the utility of the model for short term forecasting by comparing model predictions with observed lightning-caused fires over three time periods, two of which had extreme fire conditions, while the third was randomly chosen from our validation dataset. The model presented in this paper shows good predictive power and advancements in model output could allow fire managers to more easily interpret model forecasts.