دانلود مقاله ISI انگلیسی شماره 108119
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل متغیر کانونی و حافظه کوتاه مدت برای تشخیص خطا و تخمین عملکرد یک کمپرسور گریز از مرکز

عنوان انگلیسی
Canonical variable analysis and long short-term memory for fault diagnosis and performance estimation of a centrifugal compressor
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
108119 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Control Engineering Practice, Volume 72, March 2018, Pages 177-191

ترجمه کلمات کلیدی
نظارت بر وضعیت، حافظه طولانی مدت، تحلیل متغیر کاننیکال، شناسایی خطا، برآورد عملکرد،
کلمات کلیدی انگلیسی
Condition monitoring; Long short-term memory; Canonical variable analysis; Fault identification; Performance estimation;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل متغیر کانونی و حافظه کوتاه مدت برای تشخیص خطا و تخمین عملکرد یک کمپرسور گریز از مرکز

چکیده انگلیسی

Centrifugal compressors are widely used for gas lift, re-injection and transport in the oil and gas industry. Critical compressors that compress flammable gases and operate at high speeds are prioritized on maintenance lists to minimize safety risks and operational downtime hazards. Identifying incipient faults and predicting fault evolution for centrifugal compressors could improve plant safety and efficiency and reduce maintenance and operation costs. This study proposes a dynamic process monitoring method based on canonical variable analysis (CVA) and long short-term memory (LSTM). CVA was used to perform fault detection and identification based on the abnormalities in the canonical state and the residual space. In addition, CVA combined with LSTM was used to estimate the behavior of a system after the occurrence of a fault using data captured from the early stages of deterioration. The approach was evaluated using process data obtained from an operational industrial centrifugal compressor. The results show that the proposed method can effectively detect process abnormalities and perform multi-step-ahead prediction of the system’s behavior after the appearance of a fault.