دانلود مقاله ISI انگلیسی شماره 136675
ترجمه فارسی عنوان مقاله

بررسی تجربی و عددی مدیریت حرارتی یکپارچه برای باتری لیتیوم یون با مواد تغییر فاز کامپوزیت

عنوان انگلیسی
Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
136675 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy Conversion and Management, Volume 154, 15 December 2017, Pages 562-575

ترجمه کلمات کلیدی
باتری لیتیوم یون، یکپارچه سیستم مدیریت حرارتی، مواد تغییر فاز خنک کننده هوا، ویژگی های چرخه،
کلمات کلیدی انگلیسی
Lithium-ion power battery; Integrated thermal management system; Phase change material; Air cooling; Cycle characteristics;
پیش نمایش مقاله
پیش نمایش مقاله  بررسی تجربی و عددی مدیریت حرارتی یکپارچه برای باتری لیتیوم یون با مواد تغییر فاز کامپوزیت

چکیده انگلیسی

In this article, a novel composite phase change materials based thermal management system coupled with air cooling was proposed in order to sustain the temperature rise and distribution within desirable ranges of the lithium-ion battery utilized in a hybrid power train. A combined experimental and numerical study was conducted to investigate the effects of air flow rate and phase change material liquid fraction on the thermal behavior of the integrated thermal management system. Comparisons between the integrated system and an air cooling system were implemented under different air flow rates and ambient temperatures. Furthermore, thermal characteristics of both systems during charge-discharge cycles were numerically simulated. The results showed that the cooling effect of the integrated system was obviously better than that of the air cooling system. The variation of the air flow rate and ambient temperature had negligible impact on the heat dissipation of the phase change cooling. After the fully melt of phase change material, the battery temperature did not rise rapidly due to the auxiliary cooling of the cooling air. During 4 C charge-discharge cycles, the temperature rise of the battery pack could be effectively restrained by the air cooling at a flow rate exceeding 300 m3/h. While for the integrated system, good thermal management could be achieved with only 100 m3/h of air flow rate. Especially for the operation mode, i.e., phase change material cooling during the discharge and coupled phase change material and air cooling during the charge, the integrated system could control the maximum temperature of the battery pack below 49.2 °C and reach up to six charge-discharge cycles under no additional battery power consumption.