دانلود مقاله ISI انگلیسی شماره 146753
ترجمه فارسی عنوان مقاله

یک رویکرد رشد ذرات برای بهینه سازی زنجیره تامین حلقه بسته چند مرحله ای برای صنعت سلول خورشیدی

عنوان انگلیسی
A particle swarm approach for optimizing a multi-stage closed loop supply chain for the solar cell industry
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
146753 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Robotics and Computer-Integrated Manufacturing, Volume 43, February 2017, Pages 111-123

ترجمه کلمات کلیدی
حلقه بسته طراحی زنجیره تامین، جستجو چند هدفه بهینه سازی ذرات ذرات، صنعت انرژی خورشیدی،
کلمات کلیدی انگلیسی
Closed-loop supply chain design; Multi-objective searching; Particle swarm optimization; Solar energy industry;
پیش نمایش مقاله
پیش نمایش مقاله  یک رویکرد رشد ذرات برای بهینه سازی زنجیره تامین حلقه بسته چند مرحله ای برای صنعت سلول خورشیدی

چکیده انگلیسی

In order to implement sustainable strategies in a supply chain, enterprises should provide highly favorable and effective solutions for reducing carbon dioxide emissions, which brings out the issues of designing and managing a closed-loop supply chain (CLSC). This paper studies an integrated CLSC network design problem with cost and environmental concerns in the solar energy industry from sustainability perspectives. A multi-objective closed-loop supply chain design (MCSCD) model has been proposed, in consideration of many practical characteristics including flow conservation at each production/recycling unit of forward/reverse logistics (FL/RL), capacity expansion, and recycled components. A deterministic multi-objective mixed integer linear programming (MILP) model capturing the tradeoffs between the total cost and total CO2 emissions was developed to address the multistage CSLC design problem. Subsequently, a multi-objective PSO (MOPSO) algorithm with crowding distance-based nondominated sorting approach is developed to search the near-optimal solution of the MCSCD model. The computational study shows that the proposed MOPSO algorithm is suitable and effective for solving large-scale complicated CLSC structure than the conventional branch-and-bound optimization approach. Analysis results show that an enterprise needs to apply an adequate recycling strategy or energy saving technology to achieve a better economic effectiveness if the carbon emission regulation is applied. Consequently, the Pareto optimal solution obtained from MOPSO algorithm may give the superior suggestions of CLSC design, such as factory location options, capacity expansion, technology selection, purchasing, and order fulfillment decisions in practice.