دانلود مقاله ISI انگلیسی شماره 162224
ترجمه فارسی عنوان مقاله

بازبینی چندین شبکه عصبی نمونه

عنوان انگلیسی
Revisiting multiple instance neural networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
162224 2018 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 74, February 2018, Pages 15-24

ترجمه کلمات کلیدی
یادگیری نمونه چندگانه، شبکه های عصبی، یادگیری عمیق، یادگیری پایان دادن به پایان،
کلمات کلیدی انگلیسی
Multiple instance learning; Neural networks; Deep learning; End-to-end learning;
پیش نمایش مقاله
پیش نمایش مقاله  بازبینی چندین شبکه عصبی نمونه

چکیده انگلیسی

Of late, neural networks and Multiple Instance Learning (MIL) are both attractive topics in the research areas related to Artificial Intelligence. Deep neural networks have achieved great successes in supervised learning problems, and MIL as a typical weakly-supervised learning method is effective for many applications in computer vision, biometrics, natural language processing, and so on. In this article, we revisit Multiple Instance Neural Networks (MINNs) that the neural networks aim at solving the MIL problems. The MINNs perform MIL in an end-to-end manner, which take bags with a various number of instances as input and directly output the labels of bags. All of the parameters in a MINN can be optimized via back-propagation. Besides revisiting the old MINNs, we propose a new type of MINN to learn bag representations, which is different from the existing MINNs that focus on estimating instance label. In addition, recent tricks developed in deep learning have been studied in MINNs; we find deep supervision is effective for learning better bag representations. In the experiments, the proposed MINNs achieve state-of-the-art or competitive performance on several MIL benchmarks. Moreover, it is extremely fast for both testing and training, for example, it takes only 0.0003 s to predict a bag and a few seconds to train on MIL datasets on a moderate CPU.