دانلود مقاله ISI انگلیسی شماره 7125
ترجمه فارسی عنوان مقاله

اقتصاد فیزیک: تئوری بازی و تئوری اطلاعات برای مکانیک کوانتومی

عنوان انگلیسی
Econophysics: from Game Theory and Information Theory to Quantum Mechanics
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
7125 2005 39 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 348, 15 March 2005, Pages 505–543

فهرست مطالب ترجمه فارسی
چکیده

کلمات کلیدی

1.مقدمه

2. عناصر نظریه بازی کوانتومی 

3. تئوری اطلاعات به سوی مکانیک کوانتومی 

3.1 اعضای تئوری اطلاعات 

شکل 1. رفتار یک سیستم دو حالته که در (14) شرح داده شده است. 

3.2. اندازه گیری اندازه های فیزیکی 

3.3. تئوری اطلاعات و روابط عدم قطعیت 

شکل 2. ارزیابی ثابت پوانکاره

شکل 3. جهان و منطقه R که در آن اندازه های فیزیکی را انجام می دهیم. 

3.4. مکانیک کوانتومی 

شکل 4. طیف پراکندگی مینیمم عدم قطعیت لیزر

3.4.1. تبدیل های خودبه خودی 

3.4.2. معادله شرودینگر 

3.4.3. مکانیک کوانتومی استنتاج می کند

شکل 5. تابع توزیع و احتمال تجمعی عملکرد 

شکل 6. مشارکت ذرات مجازی دیراک در فرآیند تولید جرم 

4. نتیجه گیری 
ترجمه کلمات کلیدی
- عقلانیت - قوانین مطلوب - قوانین مکانیک کوانتومی - انرژی - اطلاعات
کلمات کلیدی انگلیسی
ترجمه چکیده
عقلانیت، در بین رفتارهای انسانی، قوانین فیزیکی جهان و سیستم های منظم و پیچیده بیولوژیکی عموماً ثابت و بدون تغییر است. اکونوفیزیک استفاده از مفاهیم فیزیکی در امور مالی، اقتصادی و استفاده از اقتصاد اطلاعات در فیزیک است. به طور خاص، ما نشان خواهیم داد که می توانیم اصول مکانیک کوانتومی را با استفاده از اطلاعات و نظریه بازی بدست آوریم.
ترجمه مقدمه
در حال حاضر، نظریه های اطلاعاتی از دیدگاه های مختلف (اقتصاد، نظریه بازی ، فیزیک، ریاضیات و علوم رایانه) مورد مطالعه و یا بهره برداری قرار می گیرند. هدف ما در این مقاله ارائه متون مختلف درباره اطلاعات و انتخاب مهمترین آنها است تا آنها را در اقتصاد اطلاعات و نظریه بازی مورد استفاده قرار دهیم. اقتصاد و تئوری بازی ها؛ به استفاده از اطلاعات علاقمند هستند تا توابع بهره برداری بازیکنان منطقی و هوشمند را به حداکثر برساند که بخشی از تعارض منافع است. بازیکنان اطلاعات را جمع آوری و پردازش می کنند. اطلاعات را می توان تمام و کمال در مرجع [1-4] مشاهده کنید (سورین 1992). از سوی دیگر، ریاضیات، فیزیک و علوم کامپیوتر به نمایش اطلاعات، آنتروپی (اندازه گیری اختلال)، بهینه بودن قوانین فیزیکی و نظم داخلی بدن موجودات زنده هستند علاقمند هستند[5-7]. سرانجام، اطلاعات به وسیله ابزار فیزیکی ذخیره شده، منتقل و سپس پردازش می شود. بنابراین، مفهوم اطلاعات و محاسبات را نه تنها در زمینه اقتصاد، نظریه بازی و ریاضیات می توان فرموله کرد؛ بلکه در زمینه تئوری فیزیکی نیز فرموله می شود. بنابراین، مطالعه اطلاعات در نهایت نیاز به آزمایش و برخی از رویکردهای چند رشته ای مانند معرفی مفهوم بهینه سازی [8] دارد. مفهوم بهینه سازی، ماهیت علوم اقتصادی و طبیعی است [9،10]. اقتصاد مفهوم بهینه سازی (حداکثر سود و حداقل ریسک) را معادل عقلانیت معرفی می کند و فیزیک اصل مینیمم عملکرد و حداکثر آنتروپی (حداکثر اطلاعات) را به عنوان توضیح قوانین طبیعت می داند [11،36]. اگر این دو شاخه از علم یک ستون فقرات مشترک داشته باشند، پس آنها باید به کار گیری برخی از آنالوژی های خاص را امکان پذیر کرده و عناصر دیگری مانند : شرایط تعادل، تکامل، اندازه گیری عدم قطعیت و مفهوم آنتروپی را به اشتراک می گذارند. در این مقاله، مشارکت فیزیک (نظریه اطلاعات کوانتومی) و ریاضیات (نظریه اطلاعات کلاسیک) در تئوری بازی استفاده شده اند و اقتصاد که قادر است استراتژی تعادل ناش را با استفاده از آنتروپی شانون توضیح دهد [12-15]. با توجه به [16، ص. 11]. '' مقادیر فرم H = - نقش مهمی در تئوری اطلاعات به عنوان اندازه گیری های اطلاعات، انتخاب و عدم اطمینان دارند. شکل H به عنوان آنتروپی شناخته می شود، که در فرمولاسیون های خاصی از مکانیک آماری تعریف شده است، که در آن pi احتمال آن است یک سیستم در سلول i فضای فازی آن باشد؛ . . . '' در نظریه اطلاعات کوانتومی، تعادل همبسته در بازی های دو نفره به این معنی است که احتمالات مربوط به استراتژی های هر یک از اعضای یک ماتریس همبستگی هستند. با توجه به نظریه فیزیکدان اتریشی اروین شرودینگر، درهم تنیدگی که مفهوم مکانیک کوانتومی است، مدتهاست که به عنوان منبع شمار پدیده های متناقض و غیرمنطقی شناخته شده است. از این پدیده ها، قابل توجه ترین آنها که معمولا غیر محلی نامیده می شود که در قلب پارادوکس انیشتین- پودولسکی-روزن (ERP) مشاهده می شود [مرجع 17 ص. 12 را ببینید]. انیشتن و همکاران [18] سیستم کوانتومی متشکل از دو ذرات مجزا از راه دور را در نظر می گیرند. '' ERP نشان می دهد که اندازه گیری در ذره 1 نمی تواند هیچ تأثیر واقعی روی ذره 2 (شرایط محلی) داشته باشد؛ بنابراین ویژگی ذره 2 باید مستقل از اندازه گیری انجام شده روی ذره 1 باشد. '' آزمایشات تأیید کرده اند که دو ذره در مورد ERP همیشه بخشی از یک سیستم کوانتومی هستند و بنابراین اندازه گیری بر روی یک ذره؛ پیش بینی های احتمالی را تغییر می دهد که می توان برای کل سیستم و بنابراین برای ذره ای دیگر انجام داد [5]. بدیهی است که نظریه های فیزیکی و ریاضی برای علم اقتصاد بسیار مفید هستند، اما لازم است که تئوری اطلاعات و اقتصاد نیز به توضیح قوانین مکانیک کوانتومی کمک کند. آیا ترکیب دقیق عناصر تئوری اطلاعات کلاسیک و کوانتومی امکان توسعه اقتصادی و اتخاذ نظریه بازی را فراهم می کند؟ پاسخ قطعاً مثبت است. اقتصاد تحولات خود را حول تئوری اطلاعات انجام داده است؛ به ویژه نشان داده است که عدم تقارن اطلاعات باعث ایجاد اشتباهات در تعریف یک مذاکره مطلوب است و فرضیه بازار های کامل در صورت وجود اطلاعات نامتقارن قابل قبول نیست. [19،20]. عدم تقارن اطلاعات با توجه به فرمالیزم تئوری بازی می تواند دو علت داشته باشد: اطلاعات ناقص و اطلاعات ناکامل. همانطور که در ادامه ی این مقاله مشاهده خواهیم کرد، اقتصاد اطلاعات حتی به صورت رسمی، عناصر نظریه اطلاعات کلاسیک و مفاهیم اطلاعات کوانتومی را شامل نمی شود. سازندگان نظریه اطلاعات شانون و ون نیومن هستند [مرجع 15، فصل 11 را ببینید]. شانون خالق تئوری اطلاعات کلاسیک، آنتروپی را به عنوان قلب تئوری شما معرفی می کند، و آن را از ویژگی های احتمالی به ارمغان می آورد. از سوی دیگر، ون نیومن که خالق تئوری بازی است، از عناصر احتمال استفاده می کند توسط شانون مورد توجه قرار گرفته است، اما یک فرمول جدید ریاضی آنتروپی را با استفاده از ماتریس چگالی مکانیک کوانتومی تعریف می کند. هر دو فرمولاسیون انتروپی که به ترتیب توسط شانون و فون نیومن ساخته شده است، به ما اجازه می دهد حالتهای خالص (استراتژی ها) و حالت های مخلوط (استراتژی های ترکیبی) را مدلسازی کنیم. در مطالعات ایزرت و همکاران [21،35]، آنها نه تنها یک مدل فیزیکی از استراتژی های کوانتومی را ارائه می دهند، بلکه ایده شناسایی حرکت ها را با استفاده از عملیات کوانتومی و خواص کوانتومی بیان می کنند. این رویکرد به نظر می رسد که حداقل در دو مسیر سودمند باشد. از یک سو، چندین نظریه های کاربردی اطلاعات کوانتومی که اخیراً پیشنهاد شده اند؛ می توانند به عنوان شرایط رقابتی در نظر گرفته شوند که در آن عوامل متعددی که انگیزه های مخالف دارند، در تعامل هستند. این قطعات ممکن عملیات کوانتومی را با استفاده از یک سیستم کوانتومی دوبخشی اعمال کنند. از سوی دیگر، تئوری تصمیم گیری تعمیم در حوزه احتمالات کوانتومی جالب به نظر می رسد، چرا که اصل نظریه بازی تا حدودی در نظریه احتمال ریشه دارد. در این زمینه، اگر برهم نهی استراتژی ها مجاز باشد، می توان بررسی کرد که چه راه حل هایی قابل دستیابی است [22-24]. همانطور که قبلاً دیده ایم، از دیدگاه تاریخی می توانیم تأیید کنیم که پیشرفت تئوری بازی و تئوری اطلاعات مربوط به مکانیک کوانتومی به ویژه در زمینه فناوری نانو است. بنابراین، استفاده از مکانیک کوانتوم به پنج دلیل ضروری است: - منشاء اطلاعات کوانتومی و برنامه های کاربردی بالقوه آن: رمزگذاری، شبکه های کوانتومی و اصلاح خطاها به ویژه در فیزیکدانان، ریاضیدانان و اقتصاددانان بسیار پررنگ شده است. - تئوری بازی کوانتومی اولین پیشنهاد برای ادغام کردن تئوری بازی و مکانیک کوانتومی با هدف یافتن همکاری بین هر دو است. - در این مقاله ما یک نتیجه فوری را ارائه می کنیم که حاصل از استفاده از این ترکیبات (قضیه احتمال) می باشد. قضیه احتمال به ما کمک می کند که مفهوم عقلانیت را با سری های زمانی معرفی کنیم. - یک تقارن کامل بین تعادلهای همبسته وجود دارد که درون دامنه تئوری بازی قرار می گیرند و درهم تنیدگی درون دامنه اطلاعات کوانتومی مشاهده می شود. [25،15]. - دلیل اصلی کار بر روی این مقاله آن است که از نظر تئوری و عملی، تئوری اطلاعات و نظریه بازی به ما اجازه می دهد اصول مکانیک کوانتومی را بدست آوریم. این مقاله به شرح زیر است: بخش 1 مروری بر کتابشناسی موجود است. در بخش 2، ما نظریه های اصلی بازی های کوانتومی را نشان می دهیم. بخش 3 را می توان هسته این مقاله دانست؛ در اینجا ما اصول مکانیک کوانتومی را به عنوان نتیجه حداکثر آنتروپی و اصل عملکرد مینیمم ارائه می کنیم. در بخش 4 می توان نتیجه گیری این تحقیق را مشاهده کرد.
پیش نمایش مقاله
پیش نمایش مقاله  اقتصاد فیزیک: تئوری بازی و تئوری اطلاعات برای مکانیک کوانتومی

چکیده انگلیسی

Rationality is the universal invariant among human behavior, universe physical laws and ordered and complex biological systems. Econophysics isboth the use of physical concepts in Finance and Economics, and the use of Information Economics in Physics. In special, we will show that it is possible to obtain the Quantum Mechanics principles using Information and Game Theory.

مقدمه انگلیسی

At the moment, Information Theory is studied or utilized by multiple perspectives (Economics, Game Theory, Physics, Mathematics, and Computer Science). Our goal in this paper is to present the different focuses about information and to select the main ones, to apply them in Economics of Information and Game Theory. Economics and Game Theory1 are interested in the use of information and order state, in order to maximize the utility functions of the rational2 and intelligent3 players, which are part of an interest conflict. The players gather and process information. The information can be perfect4 and complete5 see Refs. [1], [2], [3] and [4], (Sorin, 1992). On the other hand, Mathematics, Physics and Computer Science are all interested in information representation, entropy (disorder measurement), optimality of physical laws and in the living beings’ internal order see Refs. [5], [6] and [7]. Finally, information is stored, transmitted and processed by physical means. Thus, the concept of information and computation can be formulated not only in the context of Economics, Game Theory and Mathematics, but also in the context of physical theory. Therefore, the study of information ultimately requires experimentation and some multidisciplinary approaches such as the introduction of the Optimality Concept [8]. The Optimality Concept is the essence of the economic and natural sciences [9] and [10]. Economics introduces the optimality concept (maximum utility and minimum risk) as equivalent of rationality and Physics understands action minimum principle, and maximum entropy (maximum information) as the explanation of nature laws [11] and [36]. If the two sciences have a common backbone, then they should allow certain analogies and to share other elements such us: equilibrium conditions, evolution, uncertainty measurement and the entropy concept. In this paper, the contributions of Physics (Quantum Information Theory)6 and Mathematics (Classical Information Theory)7 are used in Game Theory and Economics being able to explain mixed strategy Nash's equilibrium using Shannon's entropy [12], [13], [14] and [15]. According to [16, p. 11] “quantities of the formView the MathML sourceH=-∑pilogpiplay a central role in information theory as measures of information, choice and uncertainty. The form of H will be recognized as that entropy as defined in certain formulations of statistical mechanics wherepipiis the probability of a system being in cell i of its phase space,…,…” In Quantum Information Theory, the correlated equilibria in two-player games means that the associated probabilities of each-player strategies are functions of a correlation matrix. Entanglement, according to the Austrian physicist Erwin Schrödinger, which is the essence of Quantum Mechanics, has been known for long time now to be the source of a number of paradoxical and counterintuitive phenomena. Of those, the most remarkable one is the usually called non-locality which is at the heart of the Einstein–Podolsky–Rosen paradox (ERP) see Ref. [17, p. 12]. Einstein et al. [18] which consider a quantum system consisting of two particles separated long distance. “ERP suggests that measurement on particle 1 cannot have any actual influence on particle 2 (locality condition); thus the property of particle 2 must be independent of the measurement performed on particle 1.” The experiments verified that two particles in the ERP case are always part of one quantum system and thus measurement on one particle changes the possible predictions that can be made for the whole system and therefore for the other particle [5]. It is evident that physical and mathematical theories have had a lot of utility for the economic sciences, but it is necessary to highlight that Information Theory and Economics also contribute to the explanation of Quantum Mechanics laws. Will the strict incorporation of Classic and Quantum Information Theory elements allow the development of Economics and Game Theory? The definitive answer is yes. Economics has carried out its own developments around information theory; especially it has demonstrated both that the asymmetry of information causes errors in the definition of a optimal negotiation and that the assumption of perfect markets is untenable in the presence of asymmetric information see Refs. [19] and [20]. The asymmetry of the information according to the formalism of Game Theory can have two causes: incomplete information and imperfect information. As we will see in the development of this paper, Information Economics does not even incorporate in a formal way neither elements of Classical Information Theory nor Quantum Information concepts. The creators of Information Theory are Shannon and von Newmann see Ref. [15, Chapter 11]. Shannon the creator of Classical Information Theory introduces the entropy as the heart of your theory, endowing it of a probabilistic characteristics. On the other hand, von Newmann also creator of Game Theory, uses the probabilistic elements take into account by Shannon but defines a new mathematical formulation of entropy using the density matrix of Quantum Mechanics. Both entropy formulations developed by Shannon and von Newmann, respectively, permit us to model pure states (strategies) and mixed states (mixed strategies). In Eisert et al. [21] and [35], they not only give a physical model of quantum strategies but also express the idea of identifying moves using quantum operations and quantum properties. This approach appears to be fruitful in at least two ways. On one hand, several recently proposed quantum information application theories can already be conceived as competitive situations, where several factors which have opposing motives interact. These parts may apply quantum operations using a bipartite quantum system. On the other hand, generalizing decision theory in the domain of quantum probabilities seems interesting, as the roots of game theory are partly rooted in probability theory. In this context, it is of interest to investigate what solutions are attainable if superpositions of strategies are allowed [22], [23] and [24]. As we have seen before, from a historical perspective we can affirm that Game Theory and Information Theory advances are related to Quantum Mechanics especially regarding nanotechnology. Therefore, it is necessary to use Quantum Mechanics for five reasons: • The origin of quantum information and its potential applications: encryption, quantum nets and correction of errors has wakened up great interest especially in the scientific community physicists, mathematicians and economists. • Quantum Game Theory is the first proposal of unifying Game Theory and Quantum Mechanics with the objective of finding synergies between both. • In this paper we present an immediate result, product of using these synergies (possibility theorem). Possibility theorem allows us to introduce the concept of rationality in time series. • A perfect analogy exists between correlated equilibria that fall inside the domain of Game Theory, and entanglement that falls inside the domain of Quantum Information see Refs. [25] and [15]. • The reason of being of this paper is to demonstrate theoretically and practically that Information Theory and Game Theory permit us to obtain Quantum Mechanics Principles. This paper is organized as follows. Section 1 is a revision of the existent bibliography. In Section 2, we show the main theorems of quantum games. Section 3 is the core of this paper; here we present the Quantum Mechanics Principles as a consequence of maximum entropy and minimum action principle. In Section 4 we can see the conclusions of this research.

نتیجه گیری انگلیسی

1. The Universe is structured in optimal laws. Random processes are those that maximize the mean information and are strongly related to symmetries, therefore, to conservational laws. Random processes have to do with optimal processes to manage information, but they do not have anything to do with the contents of it, this is the anthropic principle: Laws and physical constants are designed to produce life and conscience see Ref. [34]. 2. Every physical process satisfies that the action is a locally minimum. It is the most important physical magnitude, after information, because through it is possible to obtain the energy, angular momentum, momentum, charge, etc. Every physical theory must satisfy the necessary (but not sufficient) condition dS=0dS=0, because it is an objective principle. 3. We have demonstrated that the concepts of information and the principle of minimum action dS=0dS=0 leads us to develop the concepts of Quantum Mechanics and to explain the spontaneous decay transitions. Also, we have understood that all physical magnitudes are quadratic mean values of random fluctuations. 4. Information connects every thing in nature, each phenomenon is an expression of totality. Moreover, in quantum gravity, this fact is explained by Wheeler–DeWitt equation. 5. Mass appears were certain symmetries are broken, or equivalently, when the mean information decreases. A very small decrease in information produces enormous amounts of energy. Also, we have shown that there exist a relation between the amount of information and the energy of a system (Eq. (187)). Information, mass and energy are conservative quantities which are able to transform one into another. 6. A interdisciplinary scope it is possible, only, if we suppose that General System Theory is valid because games and information can be seen as particular cases of complex systems. Quantum Mechanics is obtained in the form of a generalized complex system where entities, properties and relations conserve his primitive form and add some other ones related with nature of the physical system.