دانلود مقاله ISI انگلیسی شماره 90652
ترجمه فارسی عنوان مقاله

یک چارچوب هوشمند و پیشرفته و رویکرد خوشه ای مبتنی بر فاصله برای طبقه بندی داده های تحقیق صنعتی

عنوان انگلیسی
An intelligent and improved density and distance-based clustering approach for industrial survey data classification
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
90652 2017 25 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 68, February 2017, Pages 21-28

پیش نمایش مقاله
پیش نمایش مقاله  یک چارچوب هوشمند و پیشرفته و رویکرد خوشه ای مبتنی بر فاصله برای طبقه بندی داده های تحقیق صنعتی

چکیده انگلیسی

Engineering Asset Management (EAM) emphasizes on achieving sustainable business outcomes and competitive advantages by applying systematic and risk-based processes to decisions concerning an organization's physical assets. Nowadays, there is no specific method to evaluate performance of EAM and lack of benchmark to rank performance. To fill this gap, an improved density and distance-based clustering approach is proposed. The proposed approach is intelligent and efficient. It has largely simplified the current evaluating method so that the commitment in resources for manual data analyzing and performance ranking can be significantly reduced. Moreover, the proposed approach provides a basis on benchmarking for measuring and ranking the performance in Engineering Asset Management (EAM). Additionally, by using the intelligent approach, companies can avoid to pay expensive consultant fees for inviting external consultancy company to provide the necessary EAM auditing and performance benchmarking.