دانلود مقاله ISI انگلیسی شماره 91271
ترجمه فارسی عنوان مقاله

بهینه سازی مسیرهای چند هدفه ای از وسیله نقلیه مانور با استفاده از تطبیق تفاضلی تطبیقی ​​و تئوری بازی اصلاح شده

عنوان انگلیسی
Multi-objective trajectory optimization of Space Manoeuvre Vehicle using adaptive differential evolution and modified game theory
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
91271 2017 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Acta Astronautica, Volume 136, July 2017, Pages 273-280

ترجمه کلمات کلیدی
بهینه سازی مسیر، وسایل نقلیه مانور، تئوری بازی اصلاح شده، تکامل متمایز انعطاف پذیر، الگوریتم تکاملی چند هدفه،
کلمات کلیدی انگلیسی
Trajectory optimization; Space Manoeuvre Vehicles; Modified game theory; Adaptive differential evolution; Multi-objective evolutionary algorithms;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی مسیرهای چند هدفه ای از وسیله نقلیه مانور با استفاده از تطبیق تفاضلی تطبیقی ​​و تئوری بازی اصلاح شده

چکیده انگلیسی

Highly constrained trajectory optimization for Space Manoeuvre Vehicles (SMV) is a challenging problem. In practice, this problem becomes more difficult when multiple mission requirements are taken into account. Because of the nonlinearity in the dynamic model and even the objectives, it is usually hard for designers to generate a compromised trajectory without violating strict path and box constraints. In this paper, a new multi-objective SMV optimal control model is formulated and parameterized using combined shooting-collocation technique. A modified game theory approach, coupled with an adaptive differential evolution algorithm, is designed in order to generate the pareto front of the multi-objective trajectory optimization problem. In addition, to improve the quality of obtained solutions, a control logic is embedded in the framework of the proposed approach. Several existing multi-objective evolutionary algorithms are studied and compared with the proposed method. Simulation results indicate that without driving the solution out of the feasible region, the proposed method can perform better in terms of convergence ability and convergence speed than its counterparts. Moreover, the quality of the pareto set generated using the proposed method is higher than other multi-objective evolutionary algorithms, which means the newly proposed algorithm is more attractive for solving multi-criteria SMV trajectory planning problem.