دانلود مقاله ISI انگلیسی شماره 91301
ترجمه فارسی عنوان مقاله

طبقه بندی طیفی-فضایی تصاویر ابرقهرمانی با بازی مشارکتی

عنوان انگلیسی
Spectral-spatial classification of hyperspectral imagery with cooperative game
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
91301 2018 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : ISPRS Journal of Photogrammetry and Remote Sensing, Volume 135, January 2018, Pages 31-42

پیش نمایش مقاله
پیش نمایش مقاله  طبقه بندی طیفی-فضایی تصاویر ابرقهرمانی با بازی مشارکتی

چکیده انگلیسی

Spectral-spatial classification is known to be an effective way to improve classification performance by integrating spectral information and spatial cues for hyperspectral imagery. In this paper, a game-theoretic spectral-spatial classification algorithm (GTA) using a conditional random field (CRF) model is presented, in which CRF is used to model the image considering the spatial contextual information, and a cooperative game is designed to obtain the labels. The algorithm establishes a one-to-one correspondence between image classification and game theory. The pixels of the image are considered as the players, and the labels are considered as the strategies in a game. Similar to the idea of soft classification, the uncertainty is considered to build the expected energy model in the first step. The local expected energy can be quickly calculated, based on a mixed strategy for the pixels, to establish the foundation for a cooperative game. Coalitions can then be formed by the designed merge rule based on the local expected energy, so that a majority game can be performed to make a coalition decision to obtain the label of each pixel. The experimental results on three hyperspectral data sets demonstrate the effectiveness of the proposed classification algorithm.