دانلود مقاله ISI انگلیسی شماره 94758
ترجمه فارسی عنوان مقاله

مدل سازی یک الگوریتم پیش بینی ترکیبی بر اساس الگوهای توالی و ویژگی های نزدیک: یک برنامه برای پیش بینی تقاضای گردشگری

عنوان انگلیسی
Modeling a combined forecast algorithm based on sequence patterns and near characteristics: An application for tourism demand forecasting
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
94758 2018 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Chaos, Solitons & Fractals, Volume 108, March 2018, Pages 136-147

پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی یک الگوریتم پیش بینی ترکیبی بر اساس الگوهای توالی و ویژگی های نزدیک: یک برنامه برای پیش بینی تقاضای گردشگری

چکیده انگلیسی

Tourism demand forecasting is essential for forward tourism planning. To develop appropriate public policies and ensure sound business investment decisions, both government administrations and private sector businesses use basic tourist demand forecasting to plan future operations and assess the need for facilities and infrastructure investment. Therefore, forecasting has become indispensable to tourism management. This study proposes a combined tourism forecasting model using an artificial neural network (ANN) and a clustering algorithm, which considers two aspects of the given data series: sequence patterns and near characteristics, which embody structural changes and time series correlations. Training data were clustered into homogenous groups, and for each cluster, a dedicated forecaster was employed. Several neighboring samples were then selected to capture the current changes in the data series trends. Finally, the two prediction results derived from the sequence patterns and near characteristics were combined to determine the final forecast results. To verify the superiority and accuracy of the proposed model, it was compared with three other ANN-based models and the most popular ARIMA model using three non-linear, non-stationary tourist arrivals data series. Experimental cases studies demonstrated that the proposed combination method consistently outperformed the other related methods.