دانلود مقاله ISI انگلیسی شماره 46857
ترجمه فارسی عنوان مقاله

خوشه بندی سری زمانی زیست پزشکی چند کاناله از طریق تجزیه و تحلیل معنایی نهفته سلسله مراتبی احتمالی

عنوان انگلیسی
Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46857 2014 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Methods and Programs in Biomedicine, Volume 117, Issue 2, November 2014, Pages 238–246

ترجمه کلمات کلیدی
بسته ای از کلمات - مدل موضوعی - آموزش بدون نظارت
کلمات کلیدی انگلیسی
Bag-of-words; PLSA; Topic model; Unsupervised learning; ECG
پیش نمایش مقاله
پیش نمایش مقاله  خوشه بندی سری زمانی زیست پزشکی چند کاناله از طریق تجزیه و تحلیل معنایی نهفته سلسله مراتبی احتمالی

چکیده انگلیسی

Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management.