دانلود مقاله ISI انگلیسی شماره 103189
ترجمه فارسی عنوان مقاله

یک کارآمد پردازش داده هوشمند مبتنی بر ابر برای برنامه های کاربردی چند رسانه ای سلامت تلفن همراه

عنوان انگلیسی
An intelligent cloud-based data processing broker for mobile e-health multimedia applications
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
103189 2017 37 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 66, January 2017, Pages 71-86

ترجمه کلمات کلیدی
شناخت مواد غذایی، برنامه سلامت الکترونیکی، یادگیری عمیق، کارگزار ابر مرکزی، الگوریتم تصمیم گیری، توزیع ابری پویا،
کلمات کلیدی انگلیسی
Food recognition; E-health application; Deep learning; Central cloud broker; Decision algorithm; Dynamic cloud allocation;
پیش نمایش مقاله
پیش نمایش مقاله  یک کارآمد پردازش داده هوشمند مبتنی بر ابر برای برنامه های کاربردی چند رسانه ای سلامت تلفن همراه

چکیده انگلیسی

Mobile e-health applications provide users and healthcare practitioners with an insightful way to check users/patients’ status and monitor their daily calorie intake. Mobile e-health applications provide users and healthcare practitioners with an insightful way to check users/patients’ status and monitor their daily activities. This paper proposes a cloud-based mobile e-health calorie system that can classify food objects in the plate and further compute the overall calorie of each food object with high accuracy. The novelty in our system is that we are not only offloading heavy computational functions of the system to the cloud, but also employing an intelligent cloud-broker mechanism to strategically and efficiently utilize cloud instances to provide accurate and improved time response results. The broker system uses a dynamic cloud allocation mechanism that takes decisions on allocating and de-allocating cloud instances in real-time for ensuring the average response time stays within a predefined threshold. In this paper, we further demonstrate various scenarios to explain the workflow of the cloud components including: segmentation, deep learning, indexing food images, decision making algorithms, calorie computation, scheduling management as part of the proposed cloud broker model. The implementation results of our system showed that the proposed cloud broker results in a 45% gain in the overall time taken to process the images in the cloud. With the use of dynamic cloud allocation mechanism, we were able to reduce the average time consumption by 77.21% when 60 images were processed in parallel.