دانلود مقاله ISI انگلیسی شماره 107737
ترجمه فارسی عنوان مقاله

رویکرد استخراج معادلات مبتنی بر نمونه برای برنامه های کاربردی تجارت الکترونیک

عنوان انگلیسی
A sampling based sentiment mining approach for e-commerce applications
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107737 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Processing & Management, Volume 53, Issue 1, January 2017, Pages 223-236

ترجمه کلمات کلیدی
احساسات، نظر، عدم تعادل، نمونه برداری، گروهی
کلمات کلیدی انگلیسی
Sentiment; Opinion; Imbalance; Sampling; Ensemble;
پیش نمایش مقاله
پیش نمایش مقاله  رویکرد استخراج معادلات مبتنی بر نمونه برای برنامه های کاربردی تجارت الکترونیک

چکیده انگلیسی

Emerging technologies in online commerce, mobile and customer experience have transformed the retail industry so as to enable the marketers to boost sales and the customers with the most efficient online shopping. Online reviews significantly influence the purchase decisions of buyers and marketing strategies employed by vendors in e-commerce. However, the vast amount of reviews makes it difficult for the customers to mine sentiments from online reviews. To address this problem, sentiment mining system is needed to organize the online reviews automatically into different sentiment orientation categories (e.g. positive/negative). Due to the imbalanced nature of positive and negative sentiments, the real time sentiment mining is a challenging machine learning task. The main objective of this research work is to investigate the combined effect of machine learning classifiers and sampling methods in sentiment classification under imbalanced data distributions. A modification is proposed in support vector machine based ensemble algorithm which incorporates both oversampling and undersampling to improve the prediction performance. Extensive experimental comparisons are carried out to show the effectiveness of the proposed method with several other classifiers used in terms of receiver operating characteristic curve (ROC), the area under the ROC curve and geometric mean.