دانلود مقاله ISI انگلیسی شماره 108002
ترجمه فارسی عنوان مقاله

بهینه سازی یکپارچه در برنامه ریزی برنامه ریزی زمان بندی برنامه ریزی و نگهداری پیشگیرانه

عنوان انگلیسی
Integrated optimization on train scheduling and preventive maintenance time slots planning
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
108002 2017 31 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Part C: Emerging Technologies, Volume 80, July 2017, Pages 329-359

پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی یکپارچه در برنامه ریزی برنامه ریزی زمان بندی برنامه ریزی و نگهداری پیشگیرانه

چکیده انگلیسی

We address the problem of simultaneously scheduling trains and planning preventive maintenance time slots (PMTSs) on a general railway network. Based on network cumulative flow variables, a novel integrated mixed-integer linear programming (MILP) model is proposed to simultaneously optimize train routes, orders and passing times at each station, as well as work-time of preventive maintenance tasks (PMTSs). In order to provide an easy decomposition mechanism, the limited capacity of complex tracks is modelled as side constraints and a PMTS is modelled as a virtual train. A Lagrangian relaxation solution framework is proposed, in which the difficult track capacity constraints are relaxed, to decompose the original complex integrated train scheduling and PMTSs planning problem into a sequence of single train-based sub-problems. For each sub-problem, a standard label correcting algorithm is employed for finding the time-dependent least cost path on a time-space network. The resulting dual solutions can be transformed to feasible solutions through priority rules. Numerical experiments are conducted on a small artificial network and a real-world network adapted from a Chinese railway network, to evaluate the effectiveness and computational efficiency of the integrated optimization model and the proposed Lagrangian relaxation solution framework. The benefits of simultaneously scheduling trains and planning PMTSs are demonstrated, compared with a commonly-used sequential scheduling method.