دانلود مقاله ISI انگلیسی شماره 108005
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل حساسیت احتمالی راهبردهای پیشگیرانه بهینه سازی شده برای خراب شدن دارایی های زیربنایی

عنوان انگلیسی
Probabilistic sensitivity analysis of optimised preventive maintenance strategies for deteriorating infrastructure assets
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
108005 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Reliability Engineering & System Safety, Volume 163, July 2017, Pages 33-45

ترجمه کلمات کلیدی
تجزیه و تحلیل هزینه و سود، مدل های تخریب مقدار پیش بینی اطلاعات کامل جزئی، روند گاوسی، نگهداری بهینه، شبیه ساز ورودی زمان، عدم قطعیت اندازه گیری،
کلمات کلیدی انگلیسی
Cost-benefit analysis; Deterioration models; Expected Value of Partial Perfect Information; Gaussian process; Optimised maintenance; Time input emulator; Uncertainty quantification;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل حساسیت احتمالی راهبردهای پیشگیرانه بهینه سازی شده برای خراب شدن دارایی های زیربنایی

چکیده انگلیسی

Efficient life-cycle management of civil infrastructure systems under continuous deterioration can be improved by studying the sensitivity of optimised preventive maintenance decisions with respect to changes in model parameters. Sensitivity analysis in maintenance optimisation problems is important because if the calculation of the cost of preventive maintenance strategies is not sufficiently robust, the use of the maintenance model can generate optimised maintenances strategies that are not cost-effective. Probabilistic sensitivity analysis methods (particularly variance based ones), only partially respond to this issue and their use is limited to evaluating the extent to which uncertainty in each input contributes to the overall output's variance. These methods do not take account of the decision-making problem in a straightforward manner. To address this issue, we use the concept of the Expected Value of Perfect Information (EVPI) to perform decision-informed sensitivity analysis: to identify the key parameters of the problem and quantify the value of learning about certain aspects of the life-cycle management of civil infrastructure system. This approach allows us to quantify the benefits of the maintenance strategies in terms of expected costs and in the light of accumulated information about the model parameters and aspects of the system, such as the ageing process. We use a Gamma process model to represent the uncertainty associated with asset deterioration, illustrating the use of EVPI to perform sensitivity analysis on the optimisation problem for age-based and condition-based preventive maintenance strategies. The evaluation of EVPI indices is computationally demanding and Markov Chain Monte Carlo techniques would not be helpful. To overcome this computational difficulty, we approximate the EVPI indices using Gaussian process emulators. The implications of the worked numerical examples discussed in the context of analytical efficiency and organisational learning.