دانلود مقاله ISI انگلیسی شماره 108023
ترجمه فارسی عنوان مقاله

بهینه سازی داده ها از نگهداری راه آهن برای هندسه مسیر

عنوان انگلیسی
Data-driven optimization of railway maintenance for track geometry
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
108023 2018 25 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Part C: Emerging Technologies, Volume 90, May 2018, Pages 34-58

ترجمه کلمات کلیدی
بازرسی و تعمیر و نگهداری راه آهن، ردیابی هندسه پیگیری، تعمیر و نگهداری مبتنی بر شرایط، روند تصمیم گیری مارکوف،
کلمات کلیدی انگلیسی
Railway track inspection and maintenance; Track geometry defects; Condition-based maintenance; Markov decision process;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی داده ها از نگهداری راه آهن برای هندسه مسیر

چکیده انگلیسی

Railway big data technologies are transforming the existing track inspection and maintenance policy deployed for railroads in North America. This paper develops a data-driven condition-based policy for the inspection and maintenance of track geometry. Both preventive maintenance and spot corrective maintenance are taken into account in the investigation of a 33-month inspection dataset that contains a variety of geometry measurements for every foot of track. First, this study separates the data based on the time interval of the inspection run, calculates the aggregate track quality index (TQI) for each track section, and predicts the track spot geo-defect occurrence probability using random forests. Then, a Markov chain is built to model aggregated track deterioration, and the spot geo-defects are modeled by a Bernoulli process. Finally, a Markov decision process (MDP) is developed for track maintenance decision making, and it is optimized by using a value iteration algorithm. Compared with the existing maintenance policy using Markov chain Monte Carlo (MCMC) simulation, the maintenance policy developed in this paper results in an approximately 10% savings in the total maintenance costs for every 1 mile of track.