دانلود مقاله ISI انگلیسی شماره 41018
ترجمه فارسی عنوان مقاله

استفاده از شباهت مفهومی در هستی شناسی متقابل برای سیستم های یادگیری انطباقی

عنوان انگلیسی
Using concept similarity in cross ontology for adaptive e-Learning systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
41018 2015 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of King Saud University - Computer and Information Sciences, Volume 27, Issue 1, January 2015, Pages 1–12

ترجمه کلمات کلیدی
آموزش الکترونیکی - قلمرو هستی شناسی فازی - هستی شناسی متقابل - اندازه گیری شباهت معنایی
کلمات کلیدی انگلیسی
e-Learning; Fuzzy domain ontology; Cross ontology; Semantic similarity measure
پیش نمایش مقاله
پیش نمایش مقاله  استفاده از شباهت مفهومی در هستی شناسی متقابل برای سیستم های یادگیری انطباقی

چکیده انگلیسی

e-Learning is one of the most preferred media of learning by the learners. The learners search the web to gather knowledge about a particular topic from the information in the repositories. Retrieval of relevant materials from a domain can be easily implemented if the information is organized and related in some way. Ontologies are a key concept that helps us to relate information for providing the more relevant lessons to the learner. This paper proposes an adaptive e-Learning system, which generates a user specific e-Learning content by comparing the concepts with more than one system using similarity measures. A cross ontology measure is defined, which consists of fuzzy domain ontology as the primary ontology and the domain expert’s ontology as the secondary ontology, for the comparison process. A personalized document is provided to the user with a user profile, which includes the data obtained from the processing of the proposed method under a User score, which is obtained through the user evaluation. The results of the proposed e-Learning system under the designed cross ontology similarity measure show a significant increase in performance and accuracy under different conditions. The assessment of the comparative analysis, showed the difference in performance of our proposed method over other methods. Based on the assessment results it is proved that the proposed approach is effective over other methods.