دانلود مقاله ISI انگلیسی شماره 105391
ترجمه فارسی عنوان مقاله

مدلسازی اقتصادسنجی فضایی از تعاملات آنلاین با استفاده از میکروبلاگها

عنوان انگلیسی
A spatial econometric modeling of online social interactions using microblogs
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
105391 2018 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers, Environment and Urban Systems, Available online 8 February 2018

ترجمه کلمات کلیدی
رسانه های اجتماعی، مرگ فاصله، شبکه فضایی و اجتماعی، اقتصاد سنجی فضایی، مدل جاذبه،
کلمات کلیدی انگلیسی
Social media; Death of distance; Spatial and social network; Spatial econometrics; Gravity model;
پیش نمایش مقاله
پیش نمایش مقاله  مدلسازی اقتصادسنجی فضایی از تعاملات آنلاین با استفاده از میکروبلاگها

چکیده انگلیسی

With the advent of Information and Communication technology (ICT) in modern age, the statement of “death of distance” has received numerous discussions. This article contributes a new empirical study to the debate of “death of distance” by considering the effect of spatial autocorrelation in the estimation of distance decay effect with the incorporation of network autocorrelation in spatial econometric modeling. This work is based on a city-level dataset from China's largest social networking site called Weibo. The findings are shown as following. First, the coefficient value of network autocorrelation term (0.007, significant at 0.01 level) suggests that the city-level online social links are spatially dependent. In other words, these social connections are not randomly distributed across space but tend to form spatial clusters where neighboring links are more similar. Second, controlling spatial autocorrelation in the data, a distance decay effect on the formation of online social links is unveiled with a much smaller scaling exponent of the distances (i.e., 0.276) as compared to those (e.g., 2.0, 1.8, 1.45, 1.06, 1.03, 0.4, and 0.5) in existing studies. This research provides a useful modeling framework to analyze the real-world driving forces that characterize the patterns of social interactions in virtual space and thus advance our understanding in the connection of virtual and real spaces.