دانلود مقاله ISI انگلیسی شماره 111212
ترجمه فارسی عنوان مقاله

ساخت و ساز بهینه و متعادل سازی اوراق بهادار ردیابی شاخص

عنوان انگلیسی
Optimal construction and rebalancing of index-tracking portfolios
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111212 2018 40 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 264, Issue 1, 1 January 2018, Pages 370-387

ترجمه کلمات کلیدی
دارایی، مالیه، سرمایه گذاری، ردیابی فهرست، متعادل سازی، برنامه ریزی خطی یکپارچه عدد صحیح
کلمات کلیدی انگلیسی
Finance; Index tracking; Rebalancing; Mixed-integer linear programing;
پیش نمایش مقاله
پیش نمایش مقاله  ساخت و ساز بهینه و متعادل سازی اوراق بهادار ردیابی شاخص

چکیده انگلیسی

Index funds aim to track the performance of a financial index, such as, e.g., the Standard & Poor’s 500 index. Index funds have become popular because they offer attractive risk-return profiles at low costs. The index-tracking problem considered in this paper consists of rebalancing the composition of the index fund’s tracking portfolio in response to new market information and cash deposits and withdrawals from investors such that the index fund’s tracking accuracy is maximized. In a frictionless market, maximum tracking accuracy is achieved by investing the index fund’s entire capital in a tracking portfolio that has the same normalized value development as the index. In the presence of transaction costs, which reduce the fund’s capital, one has to manage the trade-off between transaction costs and similarity in terms of normalized value developments. Existing mathematical programing formulations for the index-tracking problem do not optimize this trade-off explicitly, which may result in substantial transaction costs or tracking portfolios that differ considerably from the index in terms of normalized value development. In this paper, we present a mixed-integer linear programing formulation with a novel optimization criterion that directly considers the trade-off between transaction costs and similarity in terms of normalized value development. In an experiment based on a set of real-world problem instances, the proposed formulation achieves a considerably higher tracking accuracy than state-of-the-art formulations.