دانلود مقاله ISI انگلیسی شماره 111225
ترجمه فارسی عنوان مقاله

ارزیابی نمونه کارها حداقل واریانس جهانی در ابعاد بزرگ

عنوان انگلیسی
Estimation of the global minimum variance portfolio in high dimensions
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111225 2018 42 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 266, Issue 1, 1 April 2018, Pages 371-390

ترجمه کلمات کلیدی
دارایی، مالیه، سرمایه گذاری، نمونه کارها حداقل واریانس حداقل بسامد های بزرگ بعدی، برآورد ماتریس کوواریانس، نظریه ماتریس تصادفی،
کلمات کلیدی انگلیسی
Finance; Global minimum variance portfolio; Large-dimensional asymptotics; Covariance matrix estimation; Random matrix theory;
پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی نمونه کارها حداقل واریانس جهانی در ابعاد بزرگ

چکیده انگلیسی

We estimate the global minimum variance (GMV) portfolio in the high-dimensional case using results from random matrix theory. This approach leads to a shrinkage-type estimator which is distribution-free and optimal in the sense of minimizing the out-of-sample variance. Its asymptotic properties are investigated assuming that the number of assets p depends on the sample size n such that pn→c∈(0,+∞) as n tends to infinity. The results are obtained under weak assumptions imposed on the distribution of the asset returns: only the existence of the fourth moments is required. Furthermore, we make no assumption on the upper bound of the spectrum of the covariance matrix. As a result, the theoretical findings are also valid if the dependencies between the asset returns are described by a factor model which appears to be very popular in the financial literature nowadays. This is also documented in a numerical study where the small- and large-sample behavior of the derived estimator is compared with existing estimators of the GMV portfolio. The resulting estimator shows significant improvements and it turns out to be robust if the assumption of normality is violated.