دانلود مقاله ISI انگلیسی شماره 111610
ترجمه فارسی عنوان مقاله

تشخیص حملات مهندسی اجتماعی معناشناختی با ضعیف ترین لینک: پیاده سازی و ارزیابی تجربی از چارچوب حسگر انسان به عنوان یک امنیت

عنوان انگلیسی
Detecting semantic social engineering attacks with the weakest link: Implementation and empirical evaluation of a human-as-a-security-sensor framework
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111610 2018 81 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Security, Volume 76, July 2018, Pages 101-127

ترجمه کلمات کلیدی
امنیت اطلاعات، مهندسی اجتماعی، جرایم سایبری، حمله های معنایی، تشخیص نفوذ،
کلمات کلیدی انگلیسی
Information Security; Social Engineering; Cyber Crime; Semantic Attacks; Intrusion detection;
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص حملات مهندسی اجتماعی معناشناختی با ضعیف ترین لینک: پیاده سازی و ارزیابی تجربی از چارچوب حسگر انسان به عنوان یک امنیت

چکیده انگلیسی

The notion that the human user is the weakest link in information security has been strongly, and, we argue, rightly contested in recent years. Here, we take a step further showing that the human user can in fact be the strongest link for detecting attacks that involve deception, such as application masquerading, spearphishing, WiFi evil twin and other types of semantic social engineering. Towards this direction, we have developed a human-as-a-security-sensor framework and a practical implementation in the form of Cogni-Sense, a Microsoft Windows prototype application, designed to allow and encourage users to actively detect and report semantic social engineering attacks against them. Experimental evaluation with 26 users of different profiles running Cogni-Sense on their personal computers for a period of 45 days has shown that human sensors can consistently outperform technical security systems. Making use of a machine learning based approach, we also show that the reliability of each report, and consequently the performance of each human sensor, can be predicted in a meaningful and practical manner. In an organisation that employs a human-as-a-security-sensor implementation, such as Cogni-Sense, an attack is considered to have been detected if at least one user has reported it. In our evaluation, a small organisation consisting only of the 26 participants of the experiment would have exhibited a missed detection rate below 10%, down from 81% if only technical security systems had been used. The results strongly point towards the need to actively involve the user not only in prevention through cyber hygiene and user-centric security design, but also in active cyber threat detection and reporting.