دانلود مقاله ISI انگلیسی شماره 112908
ترجمه فارسی عنوان مقاله

فرمول سازمانی فرآیند سازگار با هوس برای برآورد زمان ورود روزانه منطقه ای با داده های ثبت نام شبکه های اجتماعی مبتنی بر مکان

عنوان انگلیسی
An adaptive hawkes process formulation for estimating time-of-day zonal trip arrivals with location-based social networking check-in data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
112908 2017 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Part C: Emerging Technologies, Volume 79, June 2017, Pages 136-155

ترجمه کلمات کلیدی
شبکه اجتماعی مبتنی بر مکان، برآورد رسیدن سفر پویا، الگوهای فعالیت انسانی، فرآیند هاوکس، مدل فضایی دولتی،
کلمات کلیدی انگلیسی
Location-based social networking; Dynamic trip arrival estimation; Human activity patterns; Hawkes process; State space model;
پیش نمایش مقاله
پیش نمایش مقاله  فرمول سازمانی فرآیند سازگار با هوس برای برآورد زمان ورود روزانه منطقه ای با داده های ثبت نام شبکه های اجتماعی مبتنی بر مکان

چکیده انگلیسی

Location-Based Social Networking (LBSN) services, such as Foursquare, Facebook check-ins, and Geo-tagged Twitter tweets, have emerged as new secondary data sources for studying individual travel mobility patterns at a fine-grained level. However, the differences between human social behavioral and travel patterns can cause significant sampling bias for travel demand estimation. This paper presents a dynamic model to estimate time-of-day zonal trip arrival patterns. In the proposed model, the state propagation is formulated by the Hawkes process; the observation model implements LBSN sampling. The proposed model is applied to Foursquare check-in data collected from Austin, Texas in 2010 and calibrated with Origin-Destination (OD) data and time of day factor from Capital Area Metropolitan Planning Organization (CAMPO). The proposed model is compared with a simple aggregation model of trip purposes and time of day based on a prior daily OD estimation model using the LBSN data. The results illustrate the promising benefits of applying stochastic point process models and state-space modeling in time-of-day zonal arrival pattern estimation with the LBSN data. The proposed model can significantly reduce the number of parameters to calibrate in order to reduce the sampling bias of LBSN data for trip arrival estimation.