دانلود مقاله ISI انگلیسی شماره 139738
ترجمه فارسی عنوان مقاله

تشخیص و به رسمیت شناختن مکانیک، حفاری و سیگنال های خودرو در سیستم پیش تهویه فیبر نوری

عنوان انگلیسی
Detection and recognition of mechanical, digging and vehicle signals in the optical fiber pre-warning system
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
139738 2018 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Optics Communications, Volume 412, 1 April 2018, Pages 191-200

ترجمه کلمات کلیدی
سیستم پیش اخطار فیبر نوری، معماری توجه بصری، تشخیص به رسمیت شناختن،
کلمات کلیدی انگلیسی
Optical fiber pre-warning system; Visual attention architecture; Detection; Recognition;
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص و به رسمیت شناختن مکانیک، حفاری و سیگنال های خودرو در سیستم پیش تهویه فیبر نوری

چکیده انگلیسی

This paper presents detection and recognition method to locate and identify harmful intrusions in the optical fiber pre-warning system (OFPS). Inspired by visual attention architecture (VAA), the process flow is divided into two parts, i.e., data-driven process and task-driven process. At first, data-driven process takes all the measurements collected by the system as input signals, which is handled by detection method to locate the harmful intrusion in both spatial domain and time domain. Then, these detected intrusion signals are taken over by task-driven process. Specifically, we get pitch period (PP) and duty cycle (DC) of the intrusion signals to identify the mechanical and manual digging (MD) intrusions respectively. For the passing vehicle (PV) intrusions, their strong low frequency component can be used as good feature. In generally, since the harmful intrusion signals only account for a small part of whole measurements, the data-driven process reduces the amount of input data for subsequent task-driven process considerably. Furthermore, the task-driven process determines the harmful intrusions orderly according to their severity, which makes a priority mechanism for the system as well as targeted processing for different harmful intrusion. At last, real experiments are performed to validate the effectiveness of this method.