دانلود مقاله ISI انگلیسی شماره 41340
ترجمه فارسی عنوان مقاله

شش کلاه تفکر: یک متا یادگیرنده رمان برای پشتیبانی تصمیم گیری هوشمند در بازار برق

عنوان انگلیسی
Six thinking hats: A novel metalearner for intelligent decision support in electricity markets
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
41340 2015 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 79, November 2015, Pages 1–11

ترجمه کلمات کلیدی
هوش مصنوعی - سیستم پشتیبانی تصمیم گیری - بازار برق - الگوریتم ژنتیک - شبیه سازی چندعاملی - فراگیری ماشین
کلمات کلیدی انگلیسی
Artificial intelligence; Decision support system; Electricity market; Genetic algorithm; Multiagent simulation; Machine learning
پیش نمایش مقاله
پیش نمایش مقاله  شش کلاه تفکر: یک متا یادگیرنده رمان برای پشتیبانی تصمیم گیری هوشمند در بازار برق

چکیده انگلیسی

The energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.