دانلود مقاله ISI انگلیسی شماره 4381
ترجمه فارسی عنوان مقاله

ارزیابی بهره وری متقابل براساس واحدهای تصمیم گیری ایده آل و آنتی ایده آل

عنوان انگلیسی
Cross-efficiency evaluation based on ideal and anti-ideal decision making units
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
4381 2011 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 38, Issue 8, August 2011, Pages 10312–10319

فهرست مطالب ترجمه فارسی
چکیده

1. مقدمه

2.ارزیابی بهره وری متقابل

جدول 1 : ماتریس بهره روی متقابل برای n  واحدتصمیم گیری

3.مدل های جدید DEA برای ارزیابی بهره وری متقابل

4. مثال های عددی

جدول 3:  ماتریس بهره روی متقابل 5 واحدتصمیم گیری با مدل 3

جدول 4:  ماتریس بهره روی متقابل 5 واحدتصمیم گیری با مدل 3

جدول 5:  ماتریس بهره روی متقابل 5 واحدتصمیم گیری با مدل 3

جدول 6:  ماتریس بهره روی متقابل 5 واحدتصمیم گیری با مدل 4

جدول 7:  میانگین بهره روی متقابل 5 واحدتصمیم گیری با مدل بدبینانه و مدل خوشبینانه

چدول 9: ماتریس بدبینانه هفت گروه اموزشی در دانشگاه

چدول 10: ماتریس خوشبینانه هفت گروه اموزشی در دانشگاه

چدول 11: ماتریس متقابل بهره روی هفت گروه اموزشی در دانشگاه با مدل 1

چدول 12: ماتریس ارزیابی متقابل هفت گروه اموزشی در دانشگاه با مدل 2

چدول 13: ماتریس ارزیابی متقابل هفت گروه اموزشی در دانشگاه با مدل 3

چدول 14: ماتریس بهره وری متقاطع هفت گروه اموزشی در دانشگاه با مدل 5

جدول 15: جمع آوری رتبه بندی های متفاوت در رتبه بندی کلی با روش بردا

5. نتیجه گیری



 
ترجمه کلمات کلیدی
- تحلیل پوششی داده - ارزیابی بهره وری وری متقابل - واحدهای تصمیم گیری ایده آل و ضد ایده آل - فاصله از واحدهای تصمیم گیری ایده آل و ضد ایده آل
کلمات کلیدی انگلیسی
ترجمه چکیده
ارزیابی بهره وری متقابل روشی موثر برای رتبه بندی واحدهای تصمیم گیری (DMUs) است،که از ورودی های متعدد برای تولید خروجی های متعدد استفاده می کند. معمولا این مدل ها می توانند به مدل های خوشبینانه و یا بدبینانه بسته به اولویت های ذهنی تصمیم گیرنده (DM) درباره ی این دو مورد افراطی، توسعه پیدا کنند. این مقاله چندین مدل تحلیل پوششی داده های جدید (DEA) را برای ارزیابی بهره وری متقابل با معرفیDMU مجازی ایده آل (IDMU) و DMU مجازی آنتی ایده آل (ADMU) مطرح می کند. مدل های جدید DEA وزن های ورودی و خروجی را از نقطه نظر فاصله ازIDMU یا ADMU بدون اینکه نسبت به DMUهای دیگر بدبینانه یا خوشبینانه باشند، تعیین می کنند.در نتیجه، اندازه گیری بهره وری متقابل با مدل های جدید DEA بی طرف و منطقی تر است. مثال های عددی برای نشان دادن کاربردهای بالقوه مدل های جدید DEA و تاثیرشان در رتبه بندی DMU ها ارائه می شوند.
ترجمه مقدمه
تحلیل پوششی داده ها (DEA) روشی برای ارزیابی عملکرد گروهی از واحدهای تصمیم گیری (DMUs) است که از ورودی های متعدد برای تولید خروجی های متعدد استفاده می کنند. تحلیل پوششی داده ها، عملکرد واحدهای تصمیم گیری را با به حداکثر رساندن بهره وری هر DMU، تحت محدودیت های مربوط به اینکه هیچکدام از بهره وری های واحد های تصمیم گیری نمی تواند بزرگتر از یک باشد، اندازه گیری می کند. بهره وری اندازه گیری شده در این روش به بهره وری خوشبینانه یا بهترین بهره وری نسبی اشاره می کند. روش اندازه گیری بهره وری خوشبینانه واحدهای تصمیم گیری، خود ارزیابی را منعکس می کند. اگر DMU با نمره بهره وری یک، خود ارزیاب باشد، به آن کارایی DEA گفته می شود؛ در غیر این صورت، بهDMU ناکارایی DEA گفته می شود. معمولا واحدهای کارآمد DEA بهتر از واحد های ناکارآمد DEA اجرا می شوند. خود ارزیابی، مجموعه ایی از مناسب ترین وزن های ورودی و خروجی را به هر DMU برای به حداکثر رساندن بهره وری خوشبینانه اختصاص می دهد، که اغلب به بیش از یک DMU منجر می شود که به عنوان کارایی DEA ارزیابی می شود و قادر به تبعیض قراردادن نیست. به منظور بهبود قدرت تبعیض آمیز DEA، ارزیابی هم نوعان به عنوان مکملی برای خود ارزیابی پیشنهاد شد. ارزیابی هم نوعان، عملکرد واحدهای تصمیم گیری را نه تنها از نظر کارایی خوشبینانه ، بلکه از نظر محاسبه بهره وری متقابل شان هم با استفاده از وزن های تعیین شده با واحدهای تصمیم گیری هم نوعان دیگر ارزیابی می کند. بنابراین ارزیابی بهره وری متقابل هم نامیده می شود. ارزیابی بهره وری متقابل اولین بار توسط سکستون، سیلکمن و هوگان در سال 1986 مطرح شد و بعد از آن توسط دویل و گرین در سال های 1994 و 1995 مورد بررسی قرار گرفته شد. ارزیابی بهره وری متقابل مجموعه ای منحصر به فرد از وزن های ورودی و خروجی را برای هرDMU تعیین می کند و سپس کارایی آن را با استفاده از تمام مجموعه وزن ها محاسبه می کند. بنابراین، هرDMU در عین حال جوابهای بهینه ی چندگانه خواهد داشت، که میانگین عملکرد کلی DMU را نشان می دهند. بر اساس میانگین بهره وری متقابل، واحدهای تصمیم گیری می توانند مقایسه و رتبه بندی شوند. با توجه به قدرت تبعیض آمیز قوی آن، ارزیابی بهره وری متقابل کاربردهای وسیعی در ادبیات DEA پیدا کرده است. به عنوان مثال، شانگ و سیئوشی در سال 1995 از ارزیابی بهره وری متقابل برای انتخاب کارآمد ترین سیستم های تولید انعطاف پذیر (FMS) استفاده کردند. گرین ،دویل و کوک در سال 1996 ارزیابی بهره وری متقابل را برای روش رای گیری ترجیحی و رتبه بندی پروژه به کار گرفتند. بیکر و تالیوری در سال 1997 ارزیابی بهره وری متقابل را برای انتخاب ربات های صنعتی اعمال کردند. سان در سال 2002 از ارزیابی بهره وری متقابل برای اختلاف بین ماشینهای کنترل عددی کامپیوتر (CNC) خوب و بد استفاده کرد. اتری و رویان در سال 2005 فواید ارزیابی بهره وری متقابل را برای تعیین بهترین انتساب کار در سیستم های تولید سلولی (CMS) به کار برنند. لیو و لو (2007a,2007b) عملکرد اقتصادی-محیطی 31 منطقه در چین را با در نظر گرفتن فاکتورهای محیطی متعدد بررسی کردند و سپس ارزیابی بهره وری متقابل را با تجزیه و تحلیل شاخه ای برای ساختن راهنمای شاخص آموزش برای مناطق ناکارآمد به منظور بهبود تدریجی کارایی، ادغام کردند. وو، لیانگ و یانگ در سال های 2008 و 2009 از ارزیابی بهره وری متقابل در رابطه با تجزیه و تحلیل خوشه ای برای رتبه بندی المپیک و تعیین شاخص استفاده کردند. تحقیقات نظری درباره ی ارزیابی بهره وری متقاطع هم بررسی شده است. به عنوان مثال، اندرسون، هولینگسورس و اینمن در سال 2002 ماهیت وزن ثابت ارزیابی بهره وری متقابل که در آن تنها یک ورودی وجود دارد را نشان دادند و با یک مثال عددی نشان دادند که این مجموعه ثابت نهان وزن ها هنوز هم ممکن است غیر واقعی باشد. سان و لو در سال 2005 مدل پروفایل بهره وری متقابل (CEP) را ارائه دادند که هر ورودی را با توجه به خروجی ها که جداگانه ورودی را مصرف می کند، ارزیابی می کند. بائو، چن، و چانگ در سال 2008 تفسیر جایگزینی برای ارزیابی بهره وری متقابل از نقطه نظرتجزیه و تحلیل در DEAارائه دادند. وو در سال 2009 مدل بهره وری متقابل خوشبینانه بازنگری شده را ارائه داد و از بهره وری متقابل برای ساخت رابطه اولویت فازی برای رتبه بندی DEA استفاده کرد. لیانگ، وو، کوک و زو در سال 2008 سه هدف ثانوی جایگزین برای ارزیابی بهره وری متقابل مطرح کردند. لیانگ، وو، کوک و زو درسال 2008مفهوم بهره وری متقابل را برای بازی بهره وری متقابل تولید کردند و یک الگوریتم تکرار شونده همگرا برای مشتق شدن نقطه ی تعادل Nash ارائه دادند. وو، لیانگ، و چن در سال 2009 مدل بهره وری متقابل بازی DEA اصلاح شده را با افزودن محدودیتی اضافه برای جلوگیری از تولید بهره وری متقابل منفی تحت بازده نسبت به مقادیر متغیر (VRS) ارائه کردند و آن را برای رتبه بندی المپیک اضافه کردند. وو، لیانگ و یانگ در سال 2009 جواب های بهره وری نهایی را با وزن دهی مقادیر بهره وری متقابل بیش تر از میانگین ساده ی آن ها محاسبه کردند که وزن ها برای جوابهای بهره وری نهایی با استفاده از ارزش شپلی ( (Shapley value در بازی گروهی تعیین می شدند. وو، لیانگ، یانگ و یان در سال 2009 مدل بازی چانه زنی را برای ارزیابی بهره وری متقابل توسعه دادند. در مدل بازی چانه زنی آن ها، هر واحد تصمیم گیری به عنوان یک بازیکن مستقل دیده می شد و راه حل چانه زنی بین بهره وری خوشبینانه وبهره وری متقابل با استفاده از مدل بازی چانه زنی نش (Nash) کلاسیک به دست می آمد. وو، لیانگ، ژا، و یانگ در سال 2009 مدل برنامه نویسی عدد مختلط برای ارزیابی بهره وری متقابل که بهترین رتبه بندی را برای هر واحد تصمیم گیری پیدا می کند، توسعه دادند. اخیرا، وانگ و چین در سال2010 یک مدل DEA بی طرف برای ارزیابی بهره وری متقابل مطرح کردند و آن را برای ارزیابی وزن متقابل توسعه دادند. مدل DEA بی طرف، نیازی به تصمیم گیری برای انتخابی سخت میان فرمول بدبینانه و خوشبینانه ندارد. مدل DEA وزن های ورودی و خروجی از نظرDMU را که تحت ارزیابی است، بدون اینکه به واحدهای تصمیم گیری دیگر بدبین یا خوش بین باشد، تعیین می کند. محاسبه بهره وری متقابل در این روش باعث بی طرف بودن و منطقی تر بودن مدلها شده است. در این مقاله، ما چهار مدل DEA بی طرف تر برای ارزیابی بهره وری متقابل از دیدگاه تجزیه و تحلیل تصمیم گیری شاخصهای چندگانه (MADA) ارائه می کنیم که با DMU ایده آل و DMU آنتی ایده آل ایجاد می شوند. این مدل های جدید DEA بینش بیشتری درباره ی ارزیابی بهره وری متقابل ارائه می کنند و تئوری و روش DEA را ترقی می دهند. ادامه مقاله به شرح زیر است. بخش 2. مقدمه ای کوتاه برای بررسی متقابل بهره وری و فرمولاسیون اصلی آن ارائه می دهد. در بخش 3. مدل های جدید DEA برای ارزیابی بهره وری متقابل توسعه داده می شوند. در بخش 4. مثال های عددی مورد بررسی قرار می گیرند. بخش 5. نتیجه گیری مقاله است.
پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی بهره وری متقابل براساس واحدهای تصمیم گیری ایده آل و آنتی ایده آل

چکیده انگلیسی

Cross-efficiency evaluation is an effective approach to ranking decision making units (DMUs) that utilize multiple inputs to produce multiple outputs. Its models can usually be developed in a way that is either aggressive or benevolent to other DMUs, depending upon the decision maker (DM)’s subjective preference to the two extreme cases. This paper proposes several new data envelopment analysis (DEA) models for cross-efficiency evaluation by introducing a virtual ideal DMU (IDMU) and a virtual anti-ideal DMU (ADMU). The new DEA models determine input and output weights from the point of view of distance from IDMU or ADMU without the need to be aggressive or benevolent to any DMUs. As a result, the cross-efficiencies measured by these new DEA models are neutral and more logical. Numerical examples are provided to illustrate the potential applications of these new DEA models and their effectiveness in ranking DMUs.

مقدمه انگلیسی

Data envelopment analysis (DEA) is a methodology for assessing the performances of a group of decision making units (DMUs) that utilize multiple inputs to produce multiple outputs. It measures the performances of the DMUs by maximizing the efficiency of every DMU, respectively, subject to the constraints that none of the efficiencies of the DMUs can be bigger than one. The efficiencies measured in this way are referred to as optimistic efficiencies or the best relative efficiencies. The way to measure the optimistic efficiencies of the DMUs is referred to as self-evaluation. If a DMU is self-evaluated to have an efficiency score of one, then it is said to be DEA efficient; otherwise, the DMU is said to be non-DEA efficient. DEA efficient units are usually thought to perform better than those non-DEA efficient units. The self-evaluation assigns the most favorable set of input and output weights to each DMU to maximize its optimistic efficiency, often leading to more than one DMU being evaluated as DEA efficient and unable to be discriminated. To improve the discrimination power of DEA, peer-evaluation was suggested as a supplement to the self-evaluation. The peer-evaluation assesses the performances of the DMUs not only in terms of their optimistic efficiencies, but also their cross-efficiencies computed using the weights determined by other peer DMUs. It is thus also called cross-efficiency evaluation. The cross-efficiency evaluation was first proposed by Sexton, Silkman, and Hogan (1986) and was later investigated by Doyle and Green, 1994 and Doyle and Green, 1995. It determines a unique set of input and output weights for each DMU and then calculates its efficiencies using all the sets of weights. Accordingly, each DMU will have multiple yet different efficiency scores, whose average reflects the overall performance of the DMU. Based on average cross-efficiencies, DMUs can be compared and ranked. Due to its strong discrimination power, the cross-efficiency evaluation has found extensive applications in the DEA literature. For example, Shang and Sueyoshi (1995) used the cross-efficiency evaluation for the selection of the most efficient flexible manufacturing systems (FMS). Green, Doyle, and Cook (1996) employed the cross-efficiency evaluation for preference voting and project ranking. Baker and Talluri (1997) applied the cross-efficiency evaluation for industrial robot selection. Sun (2002) utilized the cross-efficiency evaluation for differentiation between good and bad computer numerical control (CNC) machines. Ertay and Ruan (2005) took advantage of the cross-efficiency evaluation to determine the best labor assignment in cellular manufacturing system (CMS). Lu and Lo, 2007a and Lu and Lo, 2007b examined the economic–environmental performances of 31 regions in China by taking account of various environmental factors and then integrated the cross-efficiency evaluation with cluster analysis to construct a benchmark-learning roadmap for those inefficient regions to improve their efficiencies progressively. Wu et al., 2008 and Wu et al., 2009a made use of the cross-efficiency evaluation in conjunction with cluster analysis for Olympic ranking and benchmarking. Theoretical research on the cross-efficiency evaluation has also been investigated. For instance, Anderson, Hollingsworth, and Inman (2002) found the fixed weighting nature of the cross-efficiency evaluation where there is only one input and demonstrated with a numerical example how this unseen fixed set of weights might still be unrealistic. Sun and Lu (2005) presented a cross-efficiency profiling (CEP) model which evaluates each input with respect to the outputs that consume the input, separately. Bao, Chen, and Chang (2008) provided an alternative interpretation to the cross-efficiency evaluation from the point of view of slack analysis in DEA. Wu (2009) presented a revised benevolent cross-efficiency model and used the cross-efficiencies to construct a fuzzy preference relation for DEA ranking. Liang, Wu, Cook, and Zhu (2008a) proposed three alternative secondary goals for the cross-efficiency evaluation. Liang, Wu, Cook, and Zhu (2008b) also generalized the concept of cross-efficiency to game cross-efficiency and presented a convergent iterative algorithm to derive Nash equilibrium point. Wu, Liang, and Chen (2009) suggested a modified DEA game cross-efficiency model by appending an extra constraint to avoid producing negative cross-efficiencies under variable returns to scale (VRS) and applied it for Olympic rankings. Wu, Liang, and Yang (2009b) calculated ultimate efficiency scores by weighting cross-efficiency values rather than simply averaging them, where the weights for ultimate efficiency scores were determined by using the Shapley value in cooperative game. Wu, Liang, Yang, and Yan (2009) developed a bargaining game model for the cross-efficiency evaluation. In their bargaining game model, each DMU was seen as an independent player and the bargaining solution between the optimistic efficiency and the cross-efficiency were obtained by using the classical Nash bargaining game model. Wu, Liang, Zha, and Yang (2009) developed a mixed integer programming model for the cross-efficiency evaluation to find the best ranking order for each DMU. Recently, Wang and Chin (2010) proposed a neutral DEA model for the cross-efficiency evaluation and extended it to cross-weight evaluation. The neutral DEA model does not require the DM to make a difficult choice between aggressive and benevolent formulations. It determines the input and output weights only from the perspective of the DMU that is under evaluation, without being aggressive or benevolent to the other DMUs. The cross-efficiencies computed in this way turn out to be neutral and more logical. In this paper, we provide four more neutral DEA models for cross-efficiency evaluation from the perspective of multiple criteria decision analysis (MADA), which are built using ideal DMU and anti-ideal DMU. These new DEA models provide more insights into the cross-efficiency evaluation and enhance the theory and methodology of DEA. The remainder of the paper is organized as follows. Section 2 gives a brief introduction to the cross-efficiency evaluation and its main formulations. The new DEA models for cross-efficiency evaluation are developed in Section 3. Numerical examples are examined in Section 4. The paper concludes in Section 5.

نتیجه گیری انگلیسی

Cross-efficiency evaluation is an important yet practical method for comparing and ranking DMUs. In this paper, we have proposed four new DEA models for cross-efficiency evaluation from the perspective of multiple criteria decision analysis by introducing two virtual DMUs, which are ideal DMU and anti-ideal DMU. These new DEA models determine the input and output weights by minimizing the distance of a DMU from IDMU, or maximizing the distance between the DMU and ADMU, or both of them simultaneously, without the use of the input and output information of the other DMUs as a secondary goal. As a result, the cross-efficiencies determined by these new DEA models are neutral and more logical than those by the aggressive or benevolent formulations. Numerical examples have been tested to show the potential applications of the new DEA models and their effectiveness in discriminating among DMUs. It is hoped that these new DEA models based on IDMU and ADMU can provide more insights into the cross-efficiency evaluation and enhance the theory and methodology of DEA.