دانلود مقاله ISI انگلیسی شماره 45903
ترجمه فارسی عنوان مقاله

بهینه سازی سیستم های کنترل موجودی چندآیتم چنددوره ای با جریان نقدی تنزیل شده و نرخ تورم: دو الگوریتم فرا ابتکاری درجه بندی شده

عنوان انگلیسی
Optimizing multi-item multi-period inventory control system with discounted cash flow and inflation: Two calibrated meta-heuristic algorithms
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
45903 2013 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematical Modelling, Volume 37, Issue 4, 15 February 2013, Pages 2241–2256

ترجمه کلمات کلیدی
موجودی چندموردی چند دوره ای - ارزش زمانی پول - ارزش خالص فعلی - تورم - تخفیف - الگوریتم ژنتیک
کلمات کلیدی انگلیسی
Multi-item multi-period inventory; Time value of money; Net present value; Inflation; Discount; Genetic algorithm
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی سیستم های کنترل موجودی چندآیتم چنددوره ای با جریان نقدی تنزیل شده و نرخ تورم: دو الگوریتم فرا ابتکاری درجه بندی شده

چکیده انگلیسی

A mixed binary integer mathematical programming model is developed in this paper for ordering items in multi-item multi-period inventory control systems, in which unit and incremental quantity discounts as well as interest and inflation factors are considered. Although the demand rates are assumed deterministic, they may vary in different periods. The situation considered for the problem at hand is similar to a seasonal inventory control model in which orders and sales happen in a given season. To make the model more realistic, three types of constraints including storage space, budget, and order quantity are simultaneously considered. The goal is to find optimal order quantities of the products so that the net present value of total system cost over a finite planning horizon is minimized. Since the model is NP-hard, a genetic algorithm (GA) is presented to solve the proposed mathematical problem. Further, since no benchmarks can be found in the literature to assess the performance of the proposed algorithm, a branch and bound and a simulated annealing (SA) algorithm are employed to solve the problem as well. In addition, to make the algorithms more effective, the Taguchi method is utilized to tune different parameters of GA and SA algorithms. At the end, some numerical examples are generated to analyze and to statistically and graphically compare the performances of the proposed solving algorithms.