دانلود مقاله ISI انگلیسی شماره 86155
ترجمه فارسی عنوان مقاله

بهینه سازی هزینه ریسک برای برنامه ریزی تدارکات در زنجیره تامین چند لایه با جستجوی محلی پارکتو با معیار پذیرش آرام

عنوان انگلیسی
Risk-cost optimization for procurement planning in multi-tier supply chain by Pareto Local Search with relaxed acceptance criterion
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
86155 2017 29 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 261, Issue 1, 16 August 2017, Pages 88-96

ترجمه کلمات کلیدی
بهینه سازی هزینه ریسک، زنجیره تامین چند لایه، جستجو محلی پارکتو،
کلمات کلیدی انگلیسی
Risk-cost optimization; Multi-tier supply chain; Pareto Local Search;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی هزینه ریسک برای برنامه ریزی تدارکات در زنجیره تامین چند لایه با جستجوی محلی پارکتو با معیار پذیرش آرام

چکیده انگلیسی

We address a 2-objective optimization problem to minimize a retailer’s procurement cost and risk that is evaluated as recovery time of the retailer’s business after the procurement is suspended by a catastrophic event. In order to reduce the recovery time, the retailer needs to decentralize ordering to multiple suppliers and have contingency stock, which costs the retailer. In multi-tier supply chains, not only the retailer’s procurement plan but also their suppliers’ procurement plans affect the retailers’ risk and cost. Due to the huge combinations of their plans, it is difficult to find Pareto optimal solutions of the 2-objective optimization problem within a short space of time. We apply Pareto Local Search (PLS) based on heuristics to generate neighbors of a solution by changing suppliers’ plans in the closer tier to the retailer. The original PLS accepts the solutions that are nondominated neighbor solutions for the next search, but the acceptance criterion is too strict to find all Pareto optimal solutions. We relax the acceptance criterion in order to include dominated solutions whose Pareto rank is equal to or less than a threshold. The threshold is updated based on changes of Pareto rank during local searches.