دانلود مقاله ISI انگلیسی شماره 87163
ترجمه فارسی عنوان مقاله

الگوریتم پیشنهاد مسیر چند محدودیتی بر اساس نقشه دانش

عنوان انگلیسی
A multi-constraint learning path recommendation algorithm based on knowledge map
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
87163 2018 37 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 143, 1 March 2018, Pages 102-114

ترجمه کلمات کلیدی
یادگیری الکترونیکی، نقشه دانش، سناریوی یادگیری، توصیه آموزش مسیر،
کلمات کلیدی انگلیسی
E-learning; Knowledge map; Learning scenario; Learning path recommendation;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم پیشنهاد مسیر چند محدودیتی بر اساس نقشه دانش

چکیده انگلیسی

It is difficult for e-learners to make decisions on how to learn when they are facing with a large amount of learning resources, especially when they have to balance available limited learning time and multiple learning objectives in various learning scenarios. This research presented in this paper addresses this challenge by proposing a new multi-constraint learning path recommendation algorithm based on knowledge map. The main contributions of the paper are as follows. Firstly, two hypotheses on e-learners’ different learning path preferences for four different learning scenarios (initial learning, usual review, pre-exam learning and pre-exam review) are verified through questionnaire-based statistical analysis. Secondly, according to learning behavior characteristics of four types of the learning scenarios, a multi-constraint learning path recommendation model is proposed, in which the variables and their weighted coefficients considers different learning path preferences of the learners in different learning scenarios as well as learning resource organization and fragmented time. Thirdly, based on the proposed model and knowledge map, the design and implementation of a multi-constraint learning path recommendation algorithm is described. Finally, it is shown that the questionnaire results from over 110 e-learners verify the effectiveness of the proposed algorithm and show the similarity between the learners’ self-organized learning paths and the recommended learning paths.