دانلود مقاله ISI انگلیسی شماره 93823
ترجمه فارسی عنوان مقاله

سیستم غیر خطی شناسایی یک سیستم ذخیره انرژی حرارتی پنهان

عنوان انگلیسی
Non-linear system identification of a latent heat thermal energy storage system
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
93823 2018 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Thermal Engineering, Volume 134, April 2018, Pages 585-593

ترجمه کلمات کلیدی
شبکه عصبی پویا، ذخیره سازی گرمایی خنثی، مواد تغییر فاز مدل سازی، خصوصیات حرارتی،
کلمات کلیدی انگلیسی
Dynamic neural network; Latent heat storage; Phase change material; Modelling; Thermal characterisation;
پیش نمایش مقاله
پیش نمایش مقاله  سیستم غیر خطی شناسایی یک سیستم ذخیره انرژی حرارتی پنهان

چکیده انگلیسی

To acquire the training data necessary for the neural network, an experimental apparatus was designed, built and operated under laboratory conditions. Twenty experiments were conducted to obtain training data where the latent heat storage system was charged to different operating temperatures ranging from 25 to 70 °C. The mass flow rate of the heat exchanger fluid flowing through the heat exchanger was also varied: 0.045 and 0.05 kg/s such that the flow of heat exchanger fluid remained turbulent. These data were then presented to the network for training and optimisation of the network architecture using the Bayesian Regularization training algorithm. It was found, that the LDDN type architecture was suitable to characterise the thermal operational behaviour of a latent heat storage system with good accuracy and with little computational effort once trained. Based on an energy analysis, the neural network response predicted the quantity of energy stored and discharged with approximately 5% and 7% accuracy respectively when presented with data not used during the training process. These results indicate that a dynamic neural network may be a computationally efficient method to model the non-linear operational characteristics of a latent heat storage system. It may therefore be implemented within a simulation environment such as TRNSYS or Simulink.