دانلود مقاله ISI انگلیسی شماره 109177
ترجمه فارسی عنوان مقاله

مدل مجذور خودکار عملکرد ضعیف با استفاده از خزانه ایالات متحده

عنوان انگلیسی
Varying coefficient functional autoregressive model with application to the U.S. treasuries
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
109177 2017 36 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Multivariate Analysis, Volume 159, July 2017, Pages 168-183

ترجمه کلمات کلیدی
مدل عملکرد خودکار رگرسیون خطی محلی، برآوردگر نقره مدل ضریب متغیر منحنی تولید،
کلمات کلیدی انگلیسی
Functional autoregressive model; Local linear regression; Sieve estimator; Varying coefficient model; Yield curves;
پیش نمایش مقاله
پیش نمایش مقاله  مدل مجذور خودکار عملکرد ضعیف با استفاده از خزانه ایالات متحده

چکیده انگلیسی

The functional autoregressive (FAR) model belongs to an important class of models for dependent functional data analysis (FDA) and has been investigated intensively in many applications, especially for modeling the autoregressive dynamics of high-volume time series data. In this paper, we extend the classical FAR model to address the intrinsic local stationarity of a process through a varying-coefficient (VC) FAR model which characterizes nonconstant dependence between the functional predictors and the functional responses with a time-varying operator. We express the nonparametric models under sieves, whereas the time-varying operator is estimated by a local regression technique. The asymptotic properties of the estimated operator are established in this paper. Our simulation study points to a substantial gain from the VC-FAR modeling as the underlying smooth structural changes can be captured precisely. As an application, we consider the yield curves of the U.S. government bonds with different maturities. Our proposed model provides a reasonable interpretation of the dynamic transition consistent to the economic events triggering the evolution shifts, and performs more accurately on forecasting actual yield data at both short and long horizons, compared with various standard benchmark forecasts.