دانلود مقاله ISI انگلیسی شماره 45516
ترجمه فارسی عنوان مقاله

پیش بینی های ارزش در معرض خطر از مدل فضایی و زمانی در بازار سهام چین

عنوان انگلیسی
Value-at-Risk forecasts by a spatiotemporal model in Chinese stock market
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
45516 2016 19 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 441, 1 January 2016, Pages 173–191

ترجمه کلمات کلیدی
وابستگی مکانی - ارتباط سریالی - ارزش در معرض خطر - بازده سهام - پیش بینی
کلمات کلیدی انگلیسی
Spatial dependence; Serial correlation; Value-at-Risk; Stock returns; Forecasting
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی های ارزش در معرض خطر از مدل فضایی و زمانی در بازار سهام چین

چکیده انگلیسی

This paper generalizes a recently proposed spatial autoregressive model and introduces a spatiotemporal model for forecasting stock returns. We support the view that stock returns are affected not only by the absolute values of factors such as firm size, book-to-market ratio and momentum but also by the relative values of factors like trading volume ranking and market capitalization ranking in each period. This article studies a new method for constructing stocks’ reference groups; the method is called quartile method. Applying the method empirically to the Shanghai Stock Exchange 50 Index, we compare the daily volatility forecasting performance and the out-of-sample forecasting performance of Value-at-Risk (VaR) estimated by different models. The empirical results show that the spatiotemporal model performs surprisingly well in terms of capturing spatial dependences among individual stocks, and it produces more accurate VaR forecasts than the other three models introduced in the previous literature. Moreover, the findings indicate that both allowing for serial correlation in the disturbances and using time-varying spatial weight matrices can greatly improve the predictive accuracy of a spatial autoregressive model.