دانلود مقاله ISI انگلیسی شماره 45747
ترجمه فارسی عنوان مقاله

پیش بینی و تجزیه ریسک اعتباری پرتفوی با استفاده از عوامل اقتصاد کلان و سستی

عنوان انگلیسی
Forecasting and decomposition of portfolio credit risk using macroeconomic and frailty factors
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
45747 2014 24 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Economic Dynamics and Control, Volume 41, April 2014, Pages 69–92

ترجمه کلمات کلیدی
سهم خطر - ارزش در معرض خطر شرطی - تخصیص سرمایه اویلر - احتمال یش فرض
کلمات کلیدی انگلیسی
C15; C32; C53; E32; G17Risk contribution; Conditional value-at-risk; Euler capital allocation; Hoeffding decomposition; Default probability
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی و تجزیه ریسک اعتباری پرتفوی با استفاده از عوامل اقتصاد کلان و سستی

چکیده انگلیسی

This paper presents a dynamic portfolio credit model following the regulatory framework, using macroeconomic and latent risk factors to predict the aggregate loan portfolio loss in a banking system. The latent risk factors have three levels: global across the entire banking system, parent-sectoral for the intermediate loan sectors and sector-specific for the individual loan sectors. The aggregate credit loss distribution of the banking system over a risk horizon is generated by Monte Carlo simulation, and a quantile estimator is used to produce the aggregate risk measure and economic capital. The risk contributions of the individual sectors and risk factors are measured by combining the Hoeffding decomposition with the Euler capital allocation rule. For the U.S. banking system, we find that the real GDP growth rate, the global and sector-wide frailty risk factors and their spillovers significantly affect loan defaults, and the impacts of the frailty factors are not only economy-wide but also sector-specific. We also find that the frailty risk factors make more significant risk contributions to the aggregate portfolio risk than the macroeconomic factors, while the macroeconomic factors help to improve the accuracy and efficiency of the credit risk forecasts.