دانلود مقاله ISI انگلیسی شماره 45803
ترجمه فارسی عنوان مقاله

پیش بینی متغیرهای مالی و اقتصاد کلان با استفاده از روش کاهش داده: شواهد تجربی جدید

عنوان انگلیسی
Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
45803 2014 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Econometrics, Volume 178, Part 2, January 2014, Pages 352–367

ترجمه کلمات کلیدی
افزایش - شاخص پراکندگی - خالص الاستیک - پیش بینی - رگرسیون حداقل زاویه - شریان بند غیر منفی - پیش بینی - بررسی واقعیت - رگرسیون ریج
کلمات کلیدی انگلیسی
C1; C22; C52; C58Bagging; Bayesian model averaging; Boosting; Diffusion index; Elastic net; Forecasting; Least angle regression; Non-negative garotte; Prediction; Reality check; Ridge regression
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی متغیرهای مالی و اقتصاد کلان با استفاده از روش کاهش داده: شواهد تجربی جدید

چکیده انگلیسی

In this paper, we empirically assess the predictive accuracy of a large group of models that are specified using principle components and other shrinkage techniques, including Bayesian model averaging and various bagging, boosting, least angle regression and related methods. Our results suggest that model averaging does not dominate other well designed prediction model specification methods, and that using “hybrid” combination factor/shrinkage methods often yields superior predictions. More specifically, when using recursive estimation windows, which dominate other “windowing” approaches, “hybrid” models are mean square forecast error “best” around 1/3 of the time, when used to predict 11 key macroeconomic indicators at various forecast horizons. Baseline linear (factor) models also “win” around 1/3 of the time, as do model averaging methods. Interestingly, these broad findings change noticeably when considering different sub-samples. For example, when used to predict only recessionary periods, “hybrid” models “win” in 7 of 11 cases, when condensing findings across all “windowing” approaches, estimation methods, and models, while model averaging does not “win” in a single case. However, in expansions, and during the 1990s, model averaging wins almost 1/2 of the time. Overall, combination factor/shrinkage methods “win” approximately 1/2 of the time in 4 of 6 different sample periods. Ancillary findings based on our forecasting experiments underscore the advantages of using recursive estimation strategies, and provide new evidence of the usefulness of yield and yield-spread variables in nonlinear prediction model specification.