دانلود مقاله ISI انگلیسی شماره 51160
ترجمه فارسی عنوان مقاله

یک رویکرد افزایشی نسبت به کاهش سیستم های تصمیم گیری ناقص پویا در نظریه مجموعه راف

عنوان انگلیسی
An incremental approach to attribute reduction from dynamic incomplete decision systems in rough set theory
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
51160 2015 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Data & Knowledge Engineering, Volume 100, Part A, November 2015, Pages 116–132

ترجمه کلمات کلیدی
نسبت کاهش؛ منطقه مثبت - سیستم های تصمیم گیری پویا - کسب دانش ناقص ؛ مجموعه های راف
کلمات کلیدی انگلیسی
Attribute reduction; Positive region; Dynamic incomplete decision systems; Knowledge acquisition; Rough sets
پیش نمایش مقاله
پیش نمایش مقاله  یک رویکرد افزایشی نسبت به کاهش سیستم های تصمیم گیری ناقص پویا در نظریه مجموعه راف

چکیده انگلیسی

Attribute reduction is an important preprocessing step in data mining and knowledge discovery. The effective computation of an attribute reduct has a direct bearing on the efficiency of knowledge acquisition and various related tasks. In real-world applications, some attribute values for an object may be incomplete and an object set may vary dynamically in the knowledge representation systems, also called decision systems in rough set theory. There are relatively few studies on attribute reduction in such systems. This paper mainly focuses on this issue. For the immigration and emigration of a single object in the incomplete decision system, an incremental attribute reduction algorithm is developed to compute a new attribute reduct, rather than to obtain the dynamic system as a new one that has to be computed from scratch. In particular, for the immigration and emigration of multiple objects in the system, another incremental reduction algorithm guarantees that a new attribute reduct can be computed on the fly, which avoids some re-computations. Compared with other attribute reduction algorithms, the proposed algorithms can effectively reduce the time required for reduct computations without losing the classification performance. Experiments on different real-life data sets are conducted to test and demonstrate the efficiency and effectiveness of the proposed algorithms.