دانلود مقاله ISI انگلیسی شماره 51163
ترجمه فارسی عنوان مقاله

استخراج ویژگی با استفاده از نظریه مجموعه راف در نرم افزار بخش خدمات از دیدگاه افزایشی

عنوان انگلیسی
Feature extraction using rough set theory in service sector application from incremental perspective
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
51163 2016 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Industrial Engineering, Volume 91, January 2016, Pages 30–41

ترجمه کلمات کلیدی
تئوری مجموعه راف ؛ الگوریتم افزایشی؛ شی افزایشی - قانون القای؛ انتخاب ویژگی؛ علم سرویس
کلمات کلیدی انگلیسی
Rough set theory; Incremental algorithm; Incremental object; Rule induction; Feature selection; Service science
پیش نمایش مقاله
پیش نمایش مقاله  استخراج ویژگی با استفاده از نظریه مجموعه راف در نرم افزار بخش خدمات از دیدگاه افزایشی

چکیده انگلیسی

In service industry application, there is vague and qualitative information required to be processed properly, for example, to identify customer preferences in order to provide adequate services. From literature, Rough Set Theory (RST) has been indicated to be one of promising approaches to cope with vagueness in a large scale database. Basically, the rough set approach integrates learning-from-example techniques, extracts rules from a data set of interest, and discovers data regularities. Most of the existing RS based approaches are able to implement rule induction but it is very time consuming from computation perspective particularly from a large database. To date, there is a demand to generate and analyze business decision rules based on dynamical data sets and conclude such rules on the daily basis in the service industry. Therefore, in this study, an Incremental Weight Incorporated Rule Identification (IWIRI) algorithm is proposed to fulfill such demand. The proposed approach is proficient to efficiently process in-coming data (objetcs) and generate updated decision rules without re-computation efforts in the database. Identification of features based on the customer’s preference and implementation of the proposed algorithm are summarized in the case study. This paper forms the basis for solving many other similar problems that occur in service industries.