دانلود مقاله ISI انگلیسی شماره 51167
ترجمه فارسی عنوان مقاله

استفاده از موج تبدیل، تئوری مجموعه راف و پشتیبانی ماشین بردار برای طبقه بندی مسی با روکش نقص ورقه ورقه

عنوان انگلیسی
Applying wavelets transform, rough set theory and support vector machine for copper clad laminate defects classification
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
51167 2009 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 36, Issue 3, Part 2, April 2009, Pages 5822–5829

ترجمه کلمات کلیدی
ورقه ورقه چادری مس ؛ تبدیل موجک گسسته؛ تبدیل موجک گسسته معکوس - استخراج ویژگی؛ تئوری مجموعه راف ؛ ماشین بردار پشتیبان
کلمات کلیدی انگلیسی
Copper clad laminate; Discrete wavelet transform; Inverse discrete wavelet transform; Feature extraction; Rough set theory; Support vector machine
پیش نمایش مقاله
پیش نمایش مقاله  استفاده از موج تبدیل، تئوری مجموعه راف و پشتیبانی ماشین بردار برای طبقه بندی مسی با روکش نقص ورقه ورقه

چکیده انگلیسی

In this paper, we present a multi-resolution approach for the inspection of local defects embedded in homogeneous copper clad laminate (CCL) surfaces. The proposed method does not just rely on the extraction of local textural features in a spatial basis. It is based mainly on reconstructed images using the wavelet transform and inverse wavelet transform on the smooth subimage and detail subimages by properly selecting the adequate wavelet bases as well as the number of decomposition levels. The restored image will remove regular, repetitive texture patterns and enhance only local anomalies. Based on these local anomalies, feature extraction methods can then be used to discriminate between the defective regions and homogeneous regions in the restored image. Rough set feature selection algorithms are employed to select the feature. Rough set theory can deal with vagueness and uncertainties in image analysis, and can efficiently reduce the dimensionality of the feature space. Real samples with four classes of defects have been classified using the novel multi-classifier, namely, support vector machine. Effects of different sampling approach, kernel functions, and parameter settings used for SVM classification are thoroughly evaluated and discussed. The experimental results were also compared with the error back-propagation neural network classifier to demonstrate the efficacy of the proposed method.