دانلود مقاله ISI انگلیسی شماره 79410
ترجمه فارسی عنوان مقاله

موازنه بینایی بیس در فضاهای نوع جهانی برای بازی های متعارف

عنوان انگلیسی
Interim Bayesian Nash equilibrium on universal type spaces for supermodular games
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79410 2010 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Economic Theory, Volume 145, Issue 1, January 2010, Pages 249-263

ترجمه چکیده
ما ثابت می کنیم که یک تعادل بزرگترین و حداقل موازین ناش بیسین برای بازی های سوپرمودولار اطلاعات ناقص است. دو دلیل اصلی از اثبات های قبلی و از نتایج کلی عموم برای بازی های غیر متعارف بیزی وجود دارد: (الف) ما از فرمول موقت یک بازی بیزی استفاده می کنیم که در آن اعتقادات هر بازیکن بخشی از نوع او است تا اینکه مشتق شود از قبل؛ (ب) ما از فرمول موقت یک تعادل بیس بیس استفاده می کنیم که در آن هر بازیکن و هر نوع (به جای تقریبا هر نوع) بهترین پاسخ به مشخصات استراتژی بازیکنان دیگر را انتخاب می کند. هیچ محدودیتی در فضاهای نوع وجود ندارد و مجموعه عملیات ممکن است هر یک مخزن متریک کوچک باشد.
پیش نمایش مقاله
پیش نمایش مقاله  موازنه بینایی بیس در فضاهای نوع جهانی برای بازی های متعارف

چکیده انگلیسی

We prove the existence of a greatest and a least interim Bayesian Nash equilibrium for supermodular games of incomplete information. There are two main differences from the earlier proofs and from general existence results for non-supermodular Bayesian games: (a) we use the interim formulation of a Bayesian game, in which each player's beliefs are part of his or her type rather than being derived from a prior; (b) we use the interim formulation of a Bayesian Nash equilibrium, in which each player and every type (rather than almost every type) chooses a best response to the strategy profile of the other players. There are no restrictions on type spaces and action sets may be any compact metric lattices.