دانلود مقاله ISI انگلیسی شماره 100075
ترجمه فارسی عنوان مقاله

برنامه ریزی سرعت برای برنامه های سنگین خودرو با استفاده از اطلاعات ترافیکی

عنوان انگلیسی
Look-ahead speed planning for heavy-duty vehicle platoons using traffic information
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
100075 2017 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Procedia, Volume 22, 2017, Pages 561-569

ترجمه کلمات کلیدی
سیستم های حمل و نقل هوشمند، حمل و نقل خودروهای سنگین، شبیه سازی ترافیک میکروسکوپی، اقتصاد سوخت، رانندگی محیط زیست، کنترل بهینه، ارتباطات زیرساخت به وسیله نقلیه،
کلمات کلیدی انگلیسی
Intelligent transportation systems; Heavy-duty vehicle platooning; Microscopic traffic simulation; Fuel economy; Eco driving; Optimal control; Infrastructure-to-vehicle communication;
پیش نمایش مقاله
پیش نمایش مقاله  برنامه ریزی سرعت برای برنامه های سنگین خودرو با استفاده از اطلاعات ترافیکی

چکیده انگلیسی

Freight transport is a fast increasing transportation mode due to the economic growth in the world. Heavy-duty vehicles (HDV) have considerably greater fuel consumption, thus making them a suitable target when new policies in road transport emphasize increased energy efficiency and mitigated emission impacts. Intelligent transportation systems, based on emerging V2X communication technology, open new possibilities for developing fuel-efficient driving support functions considering real traffic information. This indicates a large potential of fuel saving and emission reduction for freight transport. This paper studies a dynamic programming-based optimal speed planning considering a maximum acceleration model for HDVs. The optimal speed control is applied for the deceleration case of HDV platoons due to received information on traffic speed reduction ahead. The control can optimize fuel consumption as well as travel time, and theoretical results for the two cases are presented. For maximal fuel saving, a microscopic traffic simulation study is performed for single HDVs and HDV platoons running in real traffic conditions. The results show a decrease in fuel consumption of more than 80% compared to simulations without applying optimal control, while the fuel consumption of other vehicles in the simulation is not significantly affected.