دانلود مقاله ISI انگلیسی شماره 101573
ترجمه فارسی عنوان مقاله

اثر روزهای غیر تجاری در پیش بینی نوسانات در بازارهای سهام

عنوان انگلیسی
The effect of non-trading days on volatility forecasts in equity markets
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
101573 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Finance Research Letters, Volume 23, November 2017, Pages 39-49

پیش نمایش مقاله
پیش نمایش مقاله  اثر روزهای غیر تجاری در پیش بینی نوسانات در بازارهای سهام

چکیده انگلیسی

Weekends and holidays lead to gaps in daily financial data. Standard models ignore these irregularities. Because this issue is particularly important for persistent time series, we focus on volatility modelling, specifically modelling of realized volatility. We suggest a simple way of adjusting volatility models, which we illustrate on an AR(1) model and the HAR model of Corsi (2009). We investigate daily series of realized volatilities for 21 equity indices around the world, covering more than 15 years, and we find that our extension improves the volatility models—both in sample and out of sample. For HAR models and for consecutive trading days, the mean squared error decreased by 2.34% in average and for the QLIKE loss function by 1.41%.