دانلود مقاله ISI انگلیسی شماره 105644
ترجمه فارسی عنوان مقاله

الگوریتم تقریبی برای برنامه ریزی شغل با زمان انتشار و اندازه دلخواه در دستگاه های دسته ای با ظرفیت های غیر یکسان

عنوان انگلیسی
Approximation algorithms for scheduling jobs with release times and arbitrary sizes on batch machines with non-identical capacities
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
105644 2017 38 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 263, Issue 3, 16 December 2017, Pages 815-826

پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم تقریبی برای برنامه ریزی شغل با زمان انتشار و اندازه دلخواه در دستگاه های دسته ای با ظرفیت های غیر یکسان

چکیده انگلیسی

We consider the problem of scheduling jobs with release times and arbitrary sizes on batch machines with non-identical capacities to minimize makespan. A job can only be assigned to a machine whose capacity is not less than the size of the job. A machine can process a group of jobs as a batch simultaneously, as long as the total size of the jobs in this batch does not exceed the capacity of the machine. The processing time of a batch is equal to the longest processing time of all the jobs in the batch. For the case of equal release times, we obtain a fast 5-approximation algorithm, as well as an algorithm with approximation ratio arbitrarily close to 2. For the case of unequal release times and a fixed number of different batch capacities, we obtain an algorithm with approximation ratio arbitrarily close to 2. We also study the problem of scheduling jobs with equal release times, arbitrary sizes, inclusive processing set restrictions and incompatible families on batch machines with identical capacities to minimize makespan. We obtain a 8/3-approximation algorithm, as well as an algorithm with approximation ratio arbitrarily close to 2. If only a single family is considered, a 2-approximation algorithm is presented. It is likely that these results cannot be too substantially improved upon, since all of the problems studied cannot be approximated to within a ratio smaller than 2 unless P=NP.