دانلود مقاله ISI انگلیسی شماره 105811
ترجمه فارسی عنوان مقاله

کالیبراسیون مدل مبتنی بر عامل با استفاده از جایگزینی یادگیری ماشین

عنوان انگلیسی
Agent-based model calibration using machine learning surrogates
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
105811 2018 24 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Economic Dynamics and Control, Volume 90, May 2018, Pages 366-389

چکیده انگلیسی

Efficiently calibrating agent-based models (ABMs) to real data is an open challenge. This paper explicitly tackles parameter space exploration and calibration of ABMs by combining machine-learning and intelligent iterative sampling. The proposed approach “learns” a fast surrogate meta-model using a limited number of ABM evaluations and approximates the nonlinear relationship between ABM inputs (initial conditions and parameters) and outputs. Performance is evaluated on the Brock and Hommes (1998) asset pricing model and the “Islands” endogenous growth model Fagiolo and Dosi (2003). Results demonstrate that machine learning surrogates obtained using the proposed iterative learning procedure provide a quite accurate proxy of the true model and dramatically reduce the computation time necessary for large scale parameter space exploration and calibration.