دانلود مقاله ISI انگلیسی شماره 109203
ترجمه فارسی عنوان مقاله

چند جمله ای های مختلف و محاسبات خود تقاطع کاهش یافته است

عنوان انگلیسی
Reduced difference polynomials and self-intersection computations
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
109203 2018 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematics and Computation, Volume 324, 1 May 2018, Pages 174-190

پیش نمایش مقاله
پیش نمایش مقاله  چند جمله ای های مختلف و محاسبات خود تقاطع کاهش یافته است

چکیده انگلیسی

A reduced difference polynomial f(u,v)=(p(u)−p(v))/(u−v) may be associated with any given univariate polynomial p(t), t ∈ [ 0, 1 ] such that the locus f(u,v)=0 identifies the pairs of distinct values u and v satisfying p(u)=p(v). The Bernstein coefficients of f(u, v) on [ 0, 1 ]2 can be determined from those of p(t) through a simple algorithm, and can be restricted to any subdomain of [ 0, 1 ]2 by standard subdivision methods. By constructing the reduced difference polynomials f(u, v) and g(u, v) associated with the coordinate components of a polynomial curve r(t)=(x(t),y(t)), a quadtree decomposition of [ 0, 1 ]2 guided by the variation-diminishing property yields a numerically stable scheme for isolating real solutions of the system f(u,v)=g(u,v)=0, which identify self-intersections of the curve r(t). Through the Kantorovich theorem for guaranteed convergence of Newton–Raphson iterations to a unique solution, the self-intersections can be efficiently computed to machine precision. By generalizing the reduced difference polynomial to encompass products of univariate polynomials, the method can be readily extended to compute the self-intersections of rational curves, and of the rational offsets to Pythagorean–hodograph curves.