دانلود مقاله ISI انگلیسی شماره 109441
ترجمه فارسی عنوان مقاله

روش کاهش ابعاد برای شناسایی پارامترهایی که به سبب نقش مدل های مشابه، کاهش می یابد

عنوان انگلیسی
The dimensional reduction method for identification of parameters that trade-off due to similar model roles
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
109441 2017 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mathematical Biosciences, Volume 285, March 2017, Pages 119-127

پیش نمایش مقاله
پیش نمایش مقاله  روش کاهش ابعاد برای شناسایی پارامترهایی که به سبب نقش مدل های مشابه، کاهش می یابد

چکیده انگلیسی

Parameter identification is an important and widely used process across the field of biomedical engineering. However, it is susceptible to a number of potential difficulties, such as parameter trade-off, causing premature convergence at non-optimal parameter values. The proposed Dimensional Reduction Method (DRM) addresses this issue by iteratively reducing the dimension of hyperplanes where trade off occurs, and running subsequent identification processes within these hyperplanes. The DRM was validated using clinical data to optimize 4 parameters of the widely used Bergman Minimal Model of glucose and insulin kinetics, as well as in-silico data to optimize 5 parameters of the Pulmonary Recruitment (PR) Model. Results were compared with the popular Levenberg–Marquardt (LMQ) Algorithm using a Monte-Carlo methodology, with both methods afforded equivalent computational resources. The DRM converged to a lower or equal residual value in all tests run using the Bergman Minimal Model and actual patient data. For the PR model, the DRM attained significantly lower overall median parameter error values and lower residuals in the vast majority of tests. This shows the DRM has potential to provide better resolution of optimum parameter values for the variety of biomedical models in which significant levels of parameter trade-off occur.