دانلود مقاله ISI انگلیسی شماره 109492
ترجمه فارسی عنوان مقاله

یک برنامه ریزی تصادفی چند مرحله ای برای اندازه گیری و برنامه ریزی زمان بندی تحت عدم اطمینان تقاضا

عنوان انگلیسی
A multi-stage stochastic programming for lot-sizing and scheduling under demand uncertainty
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
109492 2018 33 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Industrial Engineering, Volume 119, May 2018, Pages 157-166

ترجمه کلمات کلیدی
برنامه ریزی تصادفی چند مرحلهای، اندازه و برنامه ریزی طولانی، عدم قطعیت تقاضا، صنعت خودرو،
کلمات کلیدی انگلیسی
Multi-stage stochastic programming; Lot-sizing and scheduling; Demand uncertainty; Automotive industry;
پیش نمایش مقاله
پیش نمایش مقاله  یک برنامه ریزی تصادفی چند مرحله ای برای اندازه گیری و برنامه ریزی زمان بندی تحت عدم اطمینان تقاضا

چکیده انگلیسی

A stochastic lot-sizing and scheduling problem with demand uncertainty is studied in this paper. Lot-sizing determines the batch size for each product and scheduling decides the sequence of production. A multi-stage stochastic programming model is developed to minimize overall system costs including production cost, setup cost, inventory cost and backlog cost. We aim to find the optimal production sequence and resource allocation decisions. Demand uncertainty is represented by scenario trees using moment matching technique. Scenario reduction is used to select scenarios with the best representation of original set. A case study based on a manufacturing company has been conducted to illustrate and verify the model. We compared the two-stage stochastic programming model to the multi-stage stochastic programming model. The major motivation to adopt multi-stage stochastic programming models is that it extends the two-stage stochastic programming models by allowing revised decision at each period based on the previous realizations of uncertainty as well as decisions. Stability test and weak out-of-sample test are applied to find an appropriate scenario sample size. By using the multi-stage stochastic programming model, we improved the quality of solution by 10–13%.