دانلود مقاله ISI انگلیسی شماره 22942
ترجمه فارسی عنوان مقاله

منطقه / عملکرد تجزیه و تحلیل تجارت کردن معماری ضریب تکاثر (GF(2M برای منحنی رمزنگاری بیضوی

عنوان انگلیسی
An area/performance trade-off analysis of a GF(2m) multiplier architecture for elliptic curve cryptography
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
22942 2009 5 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Electrical Engineering, Volume 35, Issue 1, January 2009, Pages 54–58

ترجمه کلمات کلیدی
تجارت کردن - منحنی رمزنگاری بیضوی
کلمات کلیدی انگلیسی
trade-off, elliptic curve cryptography
پیش نمایش مقاله
پیش نمایش مقاله  منطقه / عملکرد تجزیه و تحلیل تجارت کردن معماری ضریب تکاثر (GF(2M برای منحنی رمزنگاری بیضوی

چکیده انگلیسی

A hardware architecture for GF(2m) multiplication and its evaluation in a hardware architecture for elliptic curve scalar multiplication is presented. The architecture is a parameterizable digit-serial implementation for any field order m. Area/performance trade-off results of the hardware implementation of the multiplier in an FPGA are presented and discussed.

مقدمه انگلیسی

Finite fields like the binary GF(2m) and the prime GF(p) have been used successfully in error correction codes and cryptographic algorithms. In elliptic curve cryptography (ECC), the overall performance of cryptographic ECC schemes is hardly determined by arithmetic in GF(2m), being inversion and multiplication the most time consuming operations. According to the literature, arithmetic in GF(2m) binary fields using polynomial basis leads to efficient hardware implementations of ECC. Some works related to hardware implementation of ECC have reported parameterizable GF(2m) arithmetic units to compute the most time consuming operation in elliptic curve cryptography, the scalar multiplication. Those architectures are based on a diversity of multiplication algorithms, for example: Massey Omura multipliers [1], linear feedback shift registers multipliers [2], Karatsuba [3] and [4], and digit-serial multipliers [5]. Other works have studied and implemented GF(2m) multipliers using polynomial basis like [8] and [9]. Others have used different algorithms, like the Montgomery multiplication [10] and [11]. Although, from the architectural point of view, it is well known that the arithmetic unit has a big impact in the timing and area of hardware for scalar multiplication, it is not clear whether the architecture performance is due to the parallelism in the multipliers, the number of multipliers, or the kind of multipliers used. This technical communication presents the hardware architecture of a GF(2m) digit-serial multiplier and evaluates the area/performance trade off, considering various digit sizes d and finite field orders m.

نتیجه گیری انگلیسی

An area/performance trade off analysis for a digit-serial GF(2m) finite field multiplication was presented. The size of the digit to use in an application of the proposed multiplier architecture will be guided by the area assigned to the multiplier. Also, the required processing time and which other digits can be used to maximize the performance for other field order using greater digits should be taken into account.