دانلود مقاله ISI انگلیسی شماره 41543
ترجمه فارسی عنوان مقاله

پیش بینی رفتار بهینه با استفاده از روش ابتدایی کنترل آموزش تکراری مبتنی بر داده محور مستقل از مدل

عنوان انگلیسی
Optimal behaviour prediction using a primitive-based data-driven model-free iterative learning control approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
41543 2015 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers in Industry, Volume 74, December 2015, Pages 95–109

ترجمه کلمات کلیدی
اطلاعات کنترل محور - کنترل آموزش تکراری - تنظیم بازخورد مرجع مجازی - کنترل مستقل از مدل -
کلمات کلیدی انگلیسی
Data-driven control; Iterative learning control; Virtual reference feedback tuning; Model-free control; Primitive-based control; 3D crane systems
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی رفتار بهینه با استفاده از روش ابتدایی  کنترل آموزش تکراری مبتنی بر داده محور مستقل از مدل

چکیده انگلیسی

This paper suggests an optimal behaviour prediction mechanism for Multi Input-Multi Output control systems in a hierarchical control system structure, using previously learned solutions to simple tasks called primitives. The optimality of the behaviour is formulated as a reference trajectory tracking problem. The primitives are stored in a library of pairs of reference input/controlled output signals. The reference input primitives are optimized at the higher hierarchical level in a model-free iterative learning control (MFILC) framework without using knowledge of the controlled process. Learning of the reference input primitives is performed in a reduced subspace using radial basis functions for approximations. The convergence of the MFILC learning scheme is achieved via a Virtual Reference Feedback Tuning design of the feedback controllers in the lower level feedback control loops. The new complex trajectories to be tracked are decomposed into the output primitives regarded as basis functions. Next, the optimal reference input fed to the control system in order to track the desired new trajectory is then recomposed from the reference input primitives. The efficiency of this approach is demonstrated on a case study concerning the control of a two-axis positioning mechanism, and the experimental validation is offered.