دانلود مقاله ISI انگلیسی شماره 50970
ترجمه فارسی عنوان مقاله

برآورد پایایی با استفاده از یک شبکه عصبی مصنوعی مبتنی بر الگوریتم ژنتیک: یک برنامه کاربردی برای یک ماشین مجاز بارگیری

عنوان انگلیسی
Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
50970 2012 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 39, Issue 12, 15 September 2012, Pages 10943–10951

ترجمه کلمات کلیدی
قابلیت اطمینان سیستم، انتخاب متغیر، الگوریتم ژنتیک، آنتروپی، پارامترهای یادگیری
کلمات کلیدی انگلیسی
Systems reliability; Variable selection; Genetic algorithm; Entropy; Learning parameters

چکیده انگلیسی

In this study, a neural network-based model for forecasting reliability was developed. A genetic algorithm was applied for selecting neural network parameters like learning rate (η) and momentum (μ). The input variables of the neural network model were selected by maximizing the mean entropy value. The developed model was validated by applying two benchmark data sets. A comparative study reveals that the proposed method performs better than existing methods on benchmark data sets. A case study was conducted on a load-haul-dump (LHD) machine operated at a coal mine in Alaska, USA. Past time-to-failure data for the LHD machine were collected, and cumulative time-to-failure was calculated for reliability modeling. The results demonstrate that the developed model performs well with high accuracy (R2 = 0.94) in the failure prediction of a LHD machine.