دانلود مقاله ISI انگلیسی شماره 91623
ترجمه فارسی عنوان مقاله

یک مدل کلی برای اعزام اقتصادی مرکز توزیع برق

عنوان انگلیسی
A general model for energy hub economic dispatch
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
91623 2017 22 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 190, 15 March 2017, Pages 1090-1111

ترجمه کلمات کلیدی
اعزام اقتصادی، مرکز انرژی، اعزام نیروگاه انرژی، الگوریتم جستجوی گرانشی، یادگیری خودمختار با زمان متفاوت الگوریتم جستجوی ضریب-گرانشی شتاب، بهینه سازی،
کلمات کلیدی انگلیسی
Economic dispatch; Energy hub; Energy hub economic dispatch; Gravitational search algorithm; Self-adoptive learning with time varying acceleration coefficient-gravitational search algorithm; Optimization;
پیش نمایش مقاله
پیش نمایش مقاله  یک مدل کلی برای اعزام اقتصادی مرکز توزیع برق

چکیده انگلیسی

This paper proposes a new optimization algorithm, namely Self-Adoptive Learning with Time Varying Acceleration Coefficient-Gravitational Search Algorithm (SAL-TVAC-GSA), to solve highly nonlinear, non-convex, non-smooth, non-differential, and high-dimension single- and multi-objective Energy Hub Economic Dispatch (EHED) problems. The presented algorithm is based on GSA considering three fundamental modifications to improve the quality solution and performance of original GSA. Moreover, a new optimization framework for economic dispatch is adapted to a system of energy hubs considering different hub structures, various energy carriers (electricity, gas, heat, cool, and compressed air), valve-point loading effect and prohibited zones of electric-only units, as well as the different equality and inequality constraints. To show the effectiveness of the suggested method, a high-complex energy hub system consisting of 39 hubs with 29 structures and 76 energy (electricity, gas, and heat) production units is proposed. Two individual objectives including energy cost and hub losses are minimized separately as two single-objective EHED problems. These objectives are simultaneously minimized in the multi-objective optimization. Results obtained by SAL-TVAC-GSA in terms of quality solution and computational performance are compared with Enhanced GSA (EGSA), GSA, Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) to demonstrate the ability of the proposed algorithm in finding an operating point with lower objective function.