دانلود مقاله ISI انگلیسی شماره 99762
ترجمه فارسی عنوان مقاله

روش پیش بینی مصرف برق ماهانه بر اساس مدل تصحیح خطای بردار و روش غربالگری خود سازگار

عنوان انگلیسی
A monthly electricity consumption forecasting method based on vector error correction model and self-adaptive screening method
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
99762 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 95, February 2018, Pages 427-439

ترجمه کلمات کلیدی
پیش بینی مصرف برق، عوامل خارجی خارجی، مدل تصحیح خطا، غربالگری خود سازگار، تجزیه فصلی،
کلمات کلیدی انگلیسی
Electricity consumption forecasting; External economic factors; Vector error correction model; Self-adaptive screening; Seasonal decomposition;
پیش نمایش مقاله
پیش نمایش مقاله  روش پیش بینی مصرف برق ماهانه بر اساس مدل تصحیح خطای بردار و روش غربالگری خود سازگار

چکیده انگلیسی

Economic growth has greatly fluctuated around the world in recent years, and external economic factors (EEFs) have imposed more obvious effects on electricity consumption. To improve the accuracy and applicability of mid-term, especially monthly, electricity consumption forecasting, a novel monthly electricity consumption forecasting framework (denoted as SAS-SVECM for short) based on vector error correction model (VECM) and self-adaptive screening (SAS) method is proposed in this paper, which fully explores and integrates the potential impacts from and relationships between EEFs. The SAS-SVECM firstly implements X-12-ARIMA to extract seasonal peaks from the electricity consumption and EEF time series. Second, a VECM is used to address correlations and time lag effects between electricity consumption and EEFs. And a SAS method is proposed to identify the most possible influential EEF self-adaptively, which appropriately addresses the contradiction between data quantity and data length. The SAS-SVECM achieves significant forecasting accuracy enhancement and good adaptability. Finally, an empirical example, using real monthly electricity consumption and macroeconomic data of China (2000–2014), was studied to verify the effectiveness of SAS-SVECM.