دانلود مقاله ISI انگلیسی شماره 101205
ترجمه فارسی عنوان مقاله

یک هیبرید تحت نظارت مدل نیمه نظارت مبتنی بر گراف به منظور پیش بینی حرکت یک روزه بازار سهام جهانی و قیمت کالاها پیش بینی شده است

عنوان انگلیسی
A hybrid supervised semi-supervised graph-based model to predict one-day ahead movement of global stock markets and commodity prices
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
101205 2018 26 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 105, 1 September 2018, Pages 159-173

ترجمه کلمات کلیدی
پیش بینی بازارهای مالی، مدل یادگیری ماشین ترکیبی، الگوریتم های گراف، یادگیری نیمه نظارتی،
کلمات کلیدی انگلیسی
Financial markets prediction; Hybrid machine learning models; Graph algorithms; Semi-supervised learning;
پیش نمایش مقاله
پیش نمایش مقاله  یک هیبرید تحت نظارت مدل نیمه نظارت مبتنی بر گراف به منظور پیش بینی حرکت یک روزه بازار سهام جهانی و قیمت کالاها پیش بینی شده است

چکیده انگلیسی

Market prediction has been an important machine learning research topic in recent decades. A neglected issue in prediction is having a model that can simultaneously pay attention to the interaction of global markets along historical data of the target markets being predicted. As a solution, we present a hybrid supervised semi-supervised model called HyS3 for direction of movement prediction. The graph-based semi-supervised part of HyS3 models the markets global interactions through a network designed with a novel continuous Kruskal-based graph construction algorithm called ConKruG. The supervised part of the model injects results extracted from each market’s historical data to the network whenever the hybrid model allows with an innovative conditional mechanism. The significance of higher prediction accuracy of HyS3 is comparing to other models is proved statistically against other models including supervised models and network-based semi-supervised predictions.